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Abstract S An interpolation based digitizing method
has been previously developed especially for the design of
narrowband frequency selective filters. This method
performs a trigonometric polynomial interpolation along
an extended time window that ends at the current sam-
pling time. The present paper reconsiders the basic
extended window design (EWD) idea in the light of digital
control systems requirements and proposes a generalized
EWD (G-EWD) method. The main results of this paper
are:  (i) the closed-form G-EWD expressions derived for
an interpolation space spanned by any set of linearly
independent functions of time,  (ii) a computationally
efficient linear algebra generation of the G-EWD digital
equivalents, and (iii) the derivation of optional prediction
models whose output values are computed at fractional
time instants beyond the current sampling time. Finally,
the paper compares the proposed G-EWD method to an
optimal frequency-domain digitizing method.1

I.  INTRODUCTION

A  near-optimal method for the design of discrete-time
equivalents of analog systems, based on trigonometric
polynomial interpolation along an extended time window that
ends at the current sampling time, was recently introduced [1].
This method, referred to in the following as the T-EWD, was
developed especially for the design of narrowband frequency
selective filters and was proven in [2] to be equivalent to the
optimal iterative weighted least squares (WLS) design [3] of
conventional digital filters.
  At the same time, the T-EWD filters are characterized by
additional features. Specifically, in contrast to the filter design
performed directly in the digital domain, the nature of the
EWD digitizing equations, which approximate the continuous-
time output of analog filters, leads to a dramatic reduction of
the digitizing error by adding a fractional delay or by increas-
ing the filter order while the additional poles are placed at
z=0. Yet, a significantly different problem occurs in digital
control systems. First, the performance specifications are
mainly given in the time-domain, and only to a lesser extent
in the frequency domain. Second, unlike digital signal
processing applications, which usually allow for off-line

computations where delays usually do not matter, the delays
in control systems are prohibitive. At the same time, in digital
control systems a fractional-time prediction is highly desirable
in order to compensate for both the latency in computing the
control law and the delay due to the hold element of the D/A
converter. In the following,  a new digitizing method, referred
to as the generalized extended window design (G-EWD) is
proposed in a form that addresses the control system require-
ments, including an optional fractional-time prediction.

 Basically, the traditional two-point linear interpolation
method for digitizing analog systems [4],[5] – that produces
the so-called triangle-hold equivalents – was modified in [1]
in order to use (m+1)-point interpolators with  m 2. This
design consists in the following: (i) a composition of the
interpolation and filtering operators into just one operator by
incorporating the interpolation step into the s- to z-domain
mapping step (as opposed to a sequential approach that would
cascade the interpolator and the analog system), (ii) the use of
trigonometric polynomials for interpolation, and (iii) digital
implementations with an optional delay d and additional poles
at z=0. The order of the resulting digital transfer function
HD(z) is  m nA+d, where nA is the order of the analog system
defined by its transfer function H(s). It was shown that the
features (i)-(iii) are relevant only for m 2, and they increase
the digitizing accuracy as m increases within reasonable
limits.

The above idea of an extended interpolation interval is
used by the G-EWD method proposed below, but modified in
two ways. First, the interpolation interval is additionally
extended to the right with a fractional-time prediction interval.
Second, the interpolation space spanned by a restricted set of
sinusoidal functions is replaced with the space generated by
a finite set of selected linearly independent functions of time
{ 0(t),..., m(t)}. In the case of digital control system design,
a particular attention is given to the modes of the analog
model that will form the basis of the interpolation space.
Accordingly, given a transfer function H(s), the proposed
design produces a particular digital equivalent defined
through two sets of equations: a conventional I/O recursive
equation associated with a transfer function HD(z) and a small
size fractional-time prediction vector that can be stored with
reduced-word arithmetic. The process that leads to these
equations is now briefly presented with reference to Fig. 1.
Throughout the paper, the time is assumed to be normalized
to the sampling period Ts of the input signal, and so the
folding frequency will be  f  =  unless otherwise specified.
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Fig. 1. Interpolation intervals for m=7, nA=5, and  fp=0.3.
Definitions of some normalized variables according to Section
III below:   t = the time normalized to the sampling period;  
= the A-transform time variable of the conventional filter
design interval k-nA t k+1; f  = the A-transform variable of
the fractional prediction interval  k-1 t k+1.

The recursive generation of the current output  y(k) is
based on the response y(t), k-nA t k+1,  of the analog system
H(s) to the interpolated signal x(t) built from the last (m+1)
input samples up to the current time t=k. Moreover, y(t) is
determined along the time segment, k-nA t k+1, while the
initial conditions are the output samples  y(k-nA), . . . , y(k-1)
that were computed during the last nA steps. Thus, this design,
referred to as the extended window design provides a natural
match for the initial conditions of the analog and digital
systems and incorporates the interpolation step into the s- to
z-domain mapping step. The current sets of input and output
samples used as auxiliary conditions during the computation
of the analog filter response are grouped into the vectors xaux

and yaux:

Yet, the salient feature of the G-EWD is its flexibility in
generating accurately predicted output values at fractional
time instants within the interval  k t<k+1. Specifically, the
(m+1) input samples obtained up to the current time t=k,
together with the basis functions { 0(t), 1(t),..., m(t)},
generate the interpolated signal x(t), k-m t k+1. Next, an
approximation  y(t) of the response of the analog system H(s)
to the interpolated signal x(t) is computed on k-nA t k+1 at
predetermined fractional time instants as, for example, t=k+fP.
Depending on the control system application, the initial
conditions used to obtain y(t) may be either  y(k-nA),... , y(k-1)
if only the latency effect is to be compensated, or y(k-nA+1),
. . . ,y(k-1), y(k) if the prediction is needed after the last output

sample y(k) has been collected. The accuracy of the predicted
values stems from the fact that the interpolations at equally
spaced time instants are accurate around the middle of the
interpolation interval [6], while the interpolation error
increases toward the end segments. Thus, the extended time
window used in the computation of x(t), together with the fact
that the response y(t) of H(s) is computed after dropping the
(m-nA) left hand segments, makes y(t) benefit from the
increased accuracy of the central segment of x(t) which
contains most of the energy of x(t). Here, it should also be
noted that, in general, the most current input values (as, for
example, on  k t k+1) have little effect on the current output
values.

The paper is organized as follows. Section II derives the
closed form expression of the transfer functions HD(z)
produced with the generalized extended window design.
Section III presents a set of equations derived through linear
algebra and numerical methods which demonstrates the
efficiency of the EWD approach in implementing a fractional-
time prediction. While, algebraically, the T-EWD looks only
like a particular case of the G-EWD, Section IV emphasizes
the fundamental difference between the T-EWD and a
particular G-EWD design that uses the interpolation space
spanned by the modes of the analog system H(s).  Finally, the
proposed digitizing method is compared to the T-EWD and
WLS methods in the concluding Section V.

II.  THE  G-EWD  METHOD

The G-EWD method provides digital equivalents of
systems defined by transfer functions of the form

where N(s) and D(s) are known polynomials of orders mA and
nA, respectively. In the following, the signals x(t) and y(t) are
the input and output of the analog system H(s), while the input
and output of the designed digital equivalent HD(z) are
denoted by xD(k) and yD(k), respectively. The order of  HD(z)
is denoted by nD.

A.  The Time-Domain Invariance Synthesis

The principle of time-domain invariance used to digitize
analog systems assumes that identical inputs, xD(k)=x(t)|t=k ,
yield identical outputs, yD(k)=y(t)|t=k , along the entire time
axis. Thus, this time-domain equivalence [5] implies the
identity of the z-transforms YD(z) HD(z)XD(z) and  Z{Y(s)}.
With the notation of [4, Sect. 4.3.1], the expression  Z{Y(s)}

Z{[ -1[Y(s)]]| t = k } is the z-transform of the samples of y(t).
Thus, the above identity yields the transfer function
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Fig. 2.  I/O  signals defining the time-domain invariance
synthesis applied to a time window extended to the left of the
current sampling period [nA-1, nA] along (m-1) sampling steps
(m nA), and to the right by one prediction step. The solid
lines correspond to the I/O conventional equations: the current
output y(nA) is computed from the response of H(s) to the
segment x(t), 0 t nA, of the (m+1)-point interpolation,  with
the auxiliary conditions  y(0) = y(1) = ...  =  y(nA-1)  =  0;  t0

is the time instant where the condition of initial rest applies.
The right end dashed lines correspond to the prediction.

It was shown in [2] that signals x(t) of the form illustrated
in Fig.2 completely characterize a given interpolator. Thus,
the crux of the design is the selection of the characteristic
signal x(t), together with the method for calculating the
corresponding response  y(t) of the analog system H(s).
Particular characteristic signals and time response computa-
tions may yield the traditional impulse- and step-invariance
methods, the linear interpolation method or, finally, the G-
EWD — as shown below. At the same time, the design must
satisfy the condition of initial rest, which specifies that if the
input x(t) is zero for all the time instants prior to some initial
time t0 , then the output y(t) must also be zero for t<t0. Fig. 2
illustrates the general shape of the admissible EWD character-
istic signals x(t), as well as the corresponding form of the
response y(t) of the analog system. The interpolation adds the
requirement of continuous input, and so the above condition
must also hold for t=t0. Finally, the interpolation implies that
x(t) is an analytical function. Therefore, in the context of time-
invariant synthesis, the class of admissible characteristic
signals, x(t), corresponding to an (m+1)-point interpolation
will be the set of functions whose zeros are  m  adjacent
integers up to and including t=t0 . Fig. 2 shows that the time
origin is chosen such that there are nA interpolation segments
between t=0 and the time instant where the current digital
output is computed.

B.  Derivation of G-EWD transfer functions

For convenience, the G-EWD interpolation of the input
signal will be restricted to a set of linearly independent
functions of the form of modes of analog LTI systems.
Typically, x(t) is given by 

or, equivalently, by

Usually, M1 and M2 are selected such that m nA and the
coefficients An, Bn and Cn are obtained as the exact solution of
the (m+1) algebraic equations represented in vector form

where tk is the vector of sampling times tk =[-m+nA ,..., nA]T,
and the right hand side is the vector of the sampled character-
istic signal in Fig. 2. Two of the main interpolation space
bases are (i) the T-EWD basis composed of sets of sinusoids
whose frequencies are chosen within the domain that contains
most of the spectral energy of H(j ), and (ii) the set contain-
ing the modes (of oscillation) of the analog system expressed
as , where n, n=1,2,...,nA are the poles of H(s).
Thus, the first nA parameters rn in (4') become rn= n, whereas
the remaining ones will correspond to sinusoids from the T-
EWD basis. Here, for simplicity, n are assumed distinct.
Accordingly, the one-sided Laplace and z-transforms of x(t)
and its sampled form xD(k), are given, respectively, by the
rational functions

where both denominators are polynomials with the same
degree (m+1). The derivation of R(s) from (4) and (5) is
straightforward. Next the simple numerator of XD(z) is an
immediate result of the fact that the characteristic signal is
zero at the sampling times  -  <  t nA-1, while the first
nonzero value  x(nA)=1 yields znA XD(z) = 1. At the same

time, the polynomials Q(s) and QD(z) are readily defined by
their roots. Indeed, the roots of Q(s) are precisely the parame-
ters rn in (4'), whereas the roots of QD(z) are .

Finally, the EWD transfer function computation assumes
the auxiliary conditions y(t)=0,  for  t = 0, 1, . . . , nA-1, as
illustrated in Fig. 2. This means that the expression of Y(s) in
(3) exhibits both a zero-state and a zero-input component:
Y(s)=Yzs(s)+Yzi(s) = X(s)H(s)+Yzi(s). In fact, yzi(t) is a linear
combination of the modes of H(s), and its coefficients, say, ck

are calculated as to satisfy the auxiliary conditions of the
differential equation. The design formula (3) is implemented
below by using  (2) and (6), and applying the  Z operator to
both terms of Y(s).
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A first result is

(7)

where the polynomial z nA + g1 z nA-1 + ... + gnA is defined by its
roots . Then, the transfer function HD(z) becomes

(8)

The  recursive equations below determine the coefficients
ck such that the nA leading terms of the numerator of HD(z) in
(8) are canceled, thus satisfying the initial conditions:

(9)

The algebraic analysis of (8) yields Property P1 below.

Property P1: The real-time implementation of the G-EWD
transfer function is of order  nD = m  nA, with the nA poles zn

related to the poles n of the analog prototype by the expres-
sion , while the remaining poles, if any, are placed
at  z=0.

III. THE FRACTIONAL-TIME PREDICTION FORM OF
THE G-EWD  EQUATIONS

In order to evidence the fractional-time prediction features
of the G-EWD method, this section outlines the modifications
of the original design of the T- EWD equivalents [1] which
used the Chebyshev series representation of signals in terms
of vectors of Chebyshev series coefficients. For convenience,
this mapping of square integrable functions into the space of
square summable vectors defined over the field of real
numbers was referred to as the A-transformation [7]. Basi-
cally, the A-transform y of a signal y(t), t  [T1, T2], is the
vector y=Ay(t), whose components are the coefficients of the
Chebyshev series expansion of y(t). The inverse A-transform

is defined by

where cn( )=cos (n arc cos ) are the Chebyshev polynomials
of the first kind, and  is a normalized time variable. It is
worth noting that, for any given  and length Ny of y, only Ny

multiplications are required. Indeed, the Clenshaw algorithm
which is used to compute (10), does not need the explicit
computation of the values cn( ). For example, the A-transform
of y(t) is may be defined on the interval k-nA t k+1, in order
to include the prediction segment as in Fig. 1, or only on  k-
nA t k, if the design is restricted to the derivation of the I/O
digital equivalent HD(z)). Assume now that y is the A-trans-
form of the output signal y(t) of an analog system, defined in
Fig. 1 on the interval k-nA t k+1, corresponding to -1 1.
Then, this vector, restricted to the first  Nc coefficients may be
used to generate the vector y0 of the interpolated output,

calculated at any given times  to = {ti}i = 1,2,...,NO contained in
interval [k-nA,k+1]. The ith row of the interpolation matrix Po

is [0.5, c1 ( i ) , c2 ( i),... ] calculated with (10), where  T1=k-nA,
T2=k+1, i corresponds to ti , and  -1 i 1.

Now, (4) is used to compute the A-transform x of x(t) on
the subinterval  k-nA t k+1  of  k-m t k+1 in terms of the
vector xaux defined in (1). The result is the following relation

which defines the A-interpolation matrix operator C(m,nA).
As the A-transform reduces the computation of the

response of the analog filter H(s) to a linear algebra problem,
a first general expression for the A-transform y = Ay(t) is
obtained,

The parameters G and F in (13) are calculated once and for all
for any given transfer function H(s). Then, the inverse A-
transform (10) is to be applied to both sides of (13) in order
to yield y(t) at any desired time instant k-nA t k+1. In
particular, the choice t=k provides the conventional digital
filter difference equation

Likewise, any fixed fractional prediction time like fP in Fig. 1
yields a pair {g,f} of vectors which can be pre-computed and
saved. A different problem arises when fP is variable and must
be determined in real time, during each sampling interval. An
efficient solution, which avoids the recalculation of g and f
from  G and F, is available based on the time-window contrac-
tion matrix S (see, e.g., [7]) which relates the A-transforms y
and yC, respectively defined on the intervals -1 1 and
-1 f 1 in Fig. 1:  yC = S y. Now, the solution (13), together
with the matrices  Cy = S G and  Cx = S F, is calculated once
and for all, under the assumption that the output interval is
placed as in Fig. 1 and only  fP is variable.
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 (16)
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IV.  MAIN  PROPERTIES  OF  THE  G-EWD  METHOD

The theoretical considerations presented below, as well as
extensive numerical tests, support the conclusion that the G-
EWD transfer functions are near-optimal equivalents of their
analog counterparts. While the corresponding digitizing errors
are always comparable to those of the digital equivalents
designed iteratively with the traditional WLS frequency
sampling method [3], the G-EWD method has two salient
features with practical implications. First, since both the
analog and digital transfer functions are analytical rational
functions, the properties of such functions dramatically
simplify the design problem relatively to the WLS design
which is meant to approximate arbitrary frequency responses.
Specifically, there is no more need for the iterative refinement
typical of the WLS design. Second, in contrast to the design
performed directly in the digital domain, the nature of these
digitizing equations which approximate the output signals of
analog filters leads to an efficient solution to the problem of
implementing a fractional-time prediction by digital means.

A.  Properties Related to the Interpolation Space

Consistently with the approach taken in this paper, the
digital system design problem is restricted to the problem of
approximating the transfer function (2) of an analog system of
order nA by a discrete-time transfer function

where m nA. This is a problem of complex approximation in
the unit disk by rational functions that is solved through
interpolation such that the interpolation points are also in the
unit disk in the G-EWD case, but are on the unit circle in the
case of the T-EWD. Since both H(s) and HD(z) are analytical
rational functions, the properties of analytic functions imply
some rather powerful constraints on their behavior within their
respective regions of convergence. Moreover, these con-
straints also restrict the behavior of  H(j ) and HD(ej )
leading, for example, to the relationships between their real
and imaginary parts, as well as their magnitudes and phase
angles. One more consequence of the constraints on the
transfer functions H(s) and HD(z) relates their poles through
the relationship , mentioned in Property P1 above.
This is equivalent to the time domain condition that the modes
zn

k of the digital system are exactly the same as the sampled
sequences of the modes of the analog prototype. Thus,
although the analyticity properties imply that  H(s) and HD(z)
can be completely defined by their behavior within any
restricted domain of analyticity in the unit disc, the EWD
design is simplified by the pole-matching condition to the
extent that there is no need for an iterative refinement as in the
general WLS design.

In practice, the above considerations are to be viewed in
the context of the inherent aliasing of the digitizing tech-
niques, and so the selection of the interpolation space basis
will depend on the specifications of H(s). Thus, in the case of

high quality single-band filters primarily encountered in
digital communication systems, the T-EWD is the method of
choice. The latter is a particular case of the G-EWD method
applied to an interpolation space spanned by a set of sinusoids
whose frequencies are chosen within the frequency range
[ 0, M] that contains most of the spectral energy of H(j ).
Relevant examples were given in [1] and [2]. On the other
hand, the special G-EWD design that uses the interpolation
space spanned by the modes of the H(s) yields significantly
better results than the T-EWD in the case of the transfer
functions that are encountered in the control system design.
This is illustrated in Figs. 3 and 4 for the transfer function

Indeed,  Fig. 3 evidences the fact that six frequency knots
chosen within the excessively narrow frequency range
[0,0.25] % f still provide a reasonably good transfer function
HD(z) consistently with the analysis based on the analyticity
properties. Nevertheless, the digitizing error around the
second peak of the magnitude plot was greater than the errors
of the designs represented in Fig. 4, and so it was not shown
in this figure. Instead, the better error of a T-EWD filter
derived with the wider frequency range [ 0, M] = [0,0.7] f

was shown with the dashed line. Thus, Fig. 4 illustrates the
fact that the G-EWD method based on the modes of H(s)
provides better results in the case of systems characterized by
wideband frequency responses as, for example, continuous-
time state observers.

B.  Noniterative Digitizing of Analog Systems

Similar considerations led to the conclusion [2] that the T-
EWD and  WLS designs were equivalent, and so the T-EWD
method represented an accurate noniterative alternative. In
fact, it was proven in [2] that the T-EWD digital equivalents
are rigorously identical to those designed with a WLS method
performed with the imposed poles .

The WLS minimizes the relation

where p  and g  are the unknown coefficients of the numerator
and denominator of HD(z), n are the frequency knots within
[0, ], and w( ) is a user defined weighting function. As the
design considered in this paper deals with the problem of
approximating the transfer function of an analog system by a
discrete-time transfer function, the analyticity properties
discussed above state that the denominator of HD(z) is unique-
ly computed through the mapping defined in Property P1.

Also, extensive tests done on the G-EWD and WLS
designs supported this assertion, in the sense that all the
denominators were practically the same. Only when a large
number M is chosen in (17), the WLS design might lead to
slightly different numerators, while the digitizing error
ED( ) = 20 log10(| H(j )-HD(ej )|) remains in about the same
range as the G-EWD error.
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Fig. 3  Normalized responses H(j ) (solid line), and HD(ej )
(dashed line) for the system defined by (16) with sampling
period Ts=0.1 sec  and  f=10   rad/sec. HD(ej ) was derived
with the T-EWD method using the six frequency knots shown
(small circles). Since the G-EWD plot overlaps here the H(j )
plot, the G-EWD design is assessed in Fig. 4.

The filter designed with an iterative WLS method is
compared in Fig. 4 to the G-EWD filter designed with the
eight modes of H(s) and two sinusoids selected as to reduce
the digitizing error. Thus, Fig. 4 supports the assertion that the
G-EWD method provides results that are comparable to the
optimal solution produced with the iterative WLS digitizing
method. The latter is used here as a benchmark for the
assessment of the proposed design since it is well known that
it is definitely superior to the traditional bilinear transforma-
tion or the impulse- and step-invariance methods.

V.  CONCLUSION

An interpolation based digitizing method was developed
in this paper by using a general interpolation space spanned
by a set of linearly independent functions of time. In the case
of control system applications where the digital equivalent
HD(z) of a transfer function H(s) is required, the modes of
H(s) provide a natural basis for the interpolation space. The
proposed G-EWD produces a digital equivalent defined
through two sets of equations: (i) the conventional I/O
recursive equation (14), also defined by the transfer function
HD(z) in (8) and (9), and (ii) the fractional-time interpolation
matrix equation (13). The matrices G and F in (13) can be
stored with reduced-word arithmetic, since they correspond to
a narrow A-transform interval. Moreover, if only one pre-
dicted value is to be computed as, for example, at the time
instant (k+fP) in Fig. 1, then G and F are vectors of lengths nA

and m, respectively. While any digitizing method is character-
ized by some kind of  output prediction on the time interval
k-1 t k, what makes the prediction estimation of the G-EWD
uniquely accurate is precisely the extended interpolation
interval which allows for the particular set of initial conditions
y(k-nA), . . . , y(k-1) that form a natural match to the initial
conditions of the analog system as opposed to a sequential
approach that would cascade the interpolator and H(s).

Fig. 4. The digitizing error ED( ) of three digital equivalents
to the transfer function H(s) shown in Fig.3 (nA=8, m=11,
d=0): the G-EWD equivalent designed with the eight modes
of H(s) and two sinusoids with frequencies 0.15 f, and 0.64

f  (solid line); the T-EWD equivalent designed with the
frequency range [ 0, M]=[0,0.7] f  (dashed line); the digital
equivalent given by an iterative WLS method  (dotted line).

 Apparently, the G-EWD approach makes the approxima-
tion y(t) benefit of the increased accuracy of the central part
of the m-segment interpolation interval which contains most
of the signal energy. Finally, the fact that the T-EWD and
WLS filters are equivalent [2] suggests that the G-EWD filters
are near-optimal as well, and so they are not only efficient
tools for applications that require fractional-time prediction
but also very accurate digital equivalents of the original
analog system and are obtained through a noniterative design.
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