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Abstract S In digital control systems, the discrete
equivalents to analog models are traditionally designed to
process sequences of input and output samples such that
each new output value accurately reproduces the corre-
sponding analog output at the current sampling time. This
paper addresses the fact that the performance of the
resulting discrete equivalents is  decreased by the inherent
phase delay of analog models that alters the correlation
between input and output sequences. Accordingly, a mini-
max procedure is proposed to reduce the digitizing error by
shifting the entire output sequence with respect to the input
sampling times. Then, a previously proposed interpolation
based digitizing method is used to provide (i) a synchronous
output, or (ii) an output that compensates for both the
latency in computing the control law and the delay due to
the zero-order hold in the D/A converter, or (iii) a state-
space design with a hybrid controller that eliminates the
zero-order hold altogether.

I.  INTRODUCTION

Numerous efforts have been directed in the field of digital
signal processing toward the optimal design of infinite impulse
response (IIR) digital filters that approximate prescribed
magnitude and phase responses [1], [2]. This type of
frequency-domain design was also applied to the problem of
creating discrete equivalents to continuous transfer functions
with better results than the early methods that were primarily
meant for hand computations. Next, a time-domain method –
referred to as the extended window design (EWD) of IIR filters
[3] – was shown to be equivalent to the traditional weighted
least squares (WLS) filter design with frequency sampling [4]
by using the so-called matched-pole (MP) frequency sampling
design [5]. Yet, both the conventional and optimal digitizing
methods encountered in the design of digital control systems
suffer from limitations due to the restrictive nature of the
discrete representation of continuous systems. Specifically, the
finite input and output sequences that are related through
discrete equations strictly correspond to the sampled values of
their continuous counterparts regardless of the fact that the
continuous output incorporates a phase delay. This delay of the
continuous model affects the accuracy of the current input and
output components of the discrete equations in the following
ways:  (i) the input along the last few sampling periods has
little effect on the current output sample, (ii) the output samples

depend on input samples that occurred prior to the input
samples in the current equation, and (iii) the input and output
sequences are not well correlated at sampling times.

The major contribution of this paper is twofold. First, a fast
algorithm is proposed to minimize the digitizing error by
generating the output sequence at equally spaced time instants
corresponding to a fractional time shift with respect to the
input sequence. This is the main input/output relationship
whose accuracy reduces the round-off error propagation during
the recursive computation of the output. Also, a versatile
numerical representation of the prediction interval that covers
one sampling period beyond the current sampling time is
derived. Second, a few options become available in control
system applications which require either a current output
sample at the current sampling time, or an output that extends
over the prediction interval. The latter is highly desirable in
order to avoid the problems related to the latency in computing
the control law and the delay due to the hold element of the
D/A converter.

The paper is organized as follows. Section II formulates the
control system problem and offers a unified description of the
above mentioned mathematical tools – the EWD and MP
methods. Then, the original EWD and MP equations are
modified in the spirit of the proposed optimization method. It
is shown that both the basic discrete equations and the predic-
tion fundamentally differ from a previously proposed predic-
tion method [6]. Section III deals with the practical aspects of
the real-time implementation in digital control systems exem-
plified on the design of a regulator system with state estimator
and integral control. The main conclusions are summarized in
Section IV.

II.  PROPOSED OPTIMIZATION METHOD

The problem of computing accurate discrete equivalents to
continuous models is encountered in many digital control
applications. In contrast to the design of frequency-selective
digital filters, where additional delays up to a few sampling
periods are usually accepted, the digital control design should
not increase existing delays, rather exhibit some prediction
features. At the same time, the control system components and
signals are characterized by low bandwidth relatively to the
folding frequency B/T, where T is the sampling period.
Accordingly, the signal processing involved in the design of the
discrete equivalents can be efficiently done with interpolation
methods [7], in conjunction with a moderate extrapolation
based on the dimensionality theorem [8]. The latter allows for
an accurate extension of the signal approximation interval that
will be used in the final implementation of the proposed
digitizing method.
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Fig. 1. Interpolation intervals for m=5, nA=3, and d=0.7. Definitions
of some normalized variables according to Section II-A below:   t =
the time normalized to the sampling period;  J = the A-transform time
variable used over the interval  k-nA-d#t#k+1 in the design of the
main recursive equation; Jf  = the A-transform variable of the
fractional prediction interval  k#t#k+1.

In the following, the continuous system to be digitized is
defined in terms of a transfer function H(s) obtained either
directly from some physical equations or from a reduced-order
state space model. The input and output signals are, respec-
tively, denoted by  u(t) and  y(t), without associating them at
this time with any particular control system signals. Thus, u(t)
may represent the input reference signal in a model following
system, or the control signal itself in a plant model, or even the
system output – usually denoted by  y(t) – like in the regulator
example in Section III below, where H(s) represents the
collapsed integrator and state estimator.

The EWD and MP filters defined, respectively, in [3] and
[5], are digital equivalents of a continuous model with the
transfer function

where N(s) and D(s) are known polynomials of orders mA and
nA, respectively. Without loss of generality, the time is assumed
to be normalized to the sampling period T of the input signal,
and so the folding frequency will be  Tf  = B. The EWD filters
are the result of a joint time-frequency method which is based
on the interpolation of the input signal u(t) at equally spaced
sampling time as shown in Fig. 1 above. In addition to target-
ing the time domain [k-m,k+1], the EWD interpolation targets
a frequency domain  T 0 [T0,TM] d [0,B] by expressing the
input signal in terms of the trigonometric polynomial

where  T0, . . . , TM are distinct frequency knots of the interpo-
lation problem. The frequency knots are usually chosen to be
equally spaced within the frequency range [T0,TM] that
contains most of the spectral energy of H(jT). Also, in the
basic EWD method, M and m are chosen such that the coeffi-
cients "n and $n are obtained as the exact solution of the
algebraic equations

where u(tk) are the values of the input signal at the sampling
times  tk=k-m ,..., k. Then, the response y(t) to the approxima-
tion  u(t) in (2) is to be determined and sampled to provide the
output of the discrete equivalent to H(s). Yet, the details related
to initial conditions and output sampling are essential in the
ensuing method.

The optimization steps that are proposed in this paper
address the three problems (i)-(iii) mentioned in Section I, and
can be described on Fig. 1. First, the interpolation interval is
extended to the left in order to add past input samples to the
expression of  u(t) in (2) and, consequently, to the equation that
will produce the output samples. At the same time, the well-
known fact that the error of the interpolation at equally spaced
points is significantly higher within the end segments of the
interpolation interval (see, e.g., [7]) is taken into account by
removing part of the left end from the segment of u(t) that is
used in the computation of the response y(t). Nevertheless, the
inherent delay of H(s), together with the above mentioned
dimensionality theorem, allows for an extension of the approxi-
mation interval to the right of the current sampling time k, up
to (k+1). This amounts to an increase of m, while keeping nA

unchanged. Finally, the most effective increase of the digitizing
accuracy will be obtained by applying a fractional time shift d
to the output sequence with respect to the actual sampling
times; both delays (d>0) and advances (d<0) are considered.

 A.  Numerical Generation of the Main EWD Matrix Invariants

In order to provide some output prediction, while the
accuracy of the main recursive equation of the discrete equiva-
lent is obtained with a predetermined fractional time shift, the
proposed design uses continuous approximations of u(t) and
y(t). These approximations cover the interval t0 [k-nA-d,k+1]
and are expressed in terms of vectors of Chebyshev series
coefficients. For convenience, the mapping of square integrable
functions into the space of square summable vectors defined
over the field of real numbers was referred to in [3] as the A-
transformation. Basically, the A-transform  y of a signal y(t),
t 0 [T1, T2], is the vector  y = Ay(t), whose components are the
coefficients of the Chebyshev series expansion of y(t). The
inverse A-transform is defined by

where cn(J) = cos (n arc cos J) are the Chebyshev polynomials
of the first kind, and J  is a normalized time variable. It is
worth noting that, for any given J and length Ny of y, the
explicit computation of the values cn(J) can be avoided, such
that only Ny multiplications are required. Assume now that y
is the A-transform of the output signal y(t) of H(s), defined in
Fig. 1 on the interval k-nA-d#t#k+1, corresponding to -1#J#1.
Then, this vector, restricted to the first Nc coefficients may be
used to generate the vector y0 of the interpolated output,

calculated at any given times  to = {ti}i = 1,2,...,NO, t0 [k-nA-d,k+1].
The ith row of the matrix  Po  is  [0.5, c1 (Ji ) , c2 (Ji ),... ] and is
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Fig. 2. Typical optimization diagram: distribution of the digitizing
error for fixed  nA  (nA=8),  a delay range  0 < d < 2,  and a prediction
range  -1 < d < 0.

calculated with (4), where  T1=k-nA-d, T2=k+1,  Ji corresponds
to ti, and  -1#Ji #1.

With this technique, the auxiliary conditions required by the
computation of the response y(t) can be introduced in the form
of a matrix Pd calculated with (5) for a particular set of time
instants. Specifically, a time shift  d may be chosen such that
the digital filter output yD(k), calculated at the current time t=k,
actually represents the analog output corresponding to the time
instant t=k-d. The EWD recursive generation of the current
output  y(k-d) in Fig. 1 is based on the A-transform of the
response y(t), k-nA-d#t#k+1,  of the analog prototype H(s) to
the interpolated signal u(t) built from the last (m+1) input
samples up to the time t=k. Moreover, y(t) is determined along
the time segment, k-nA-d#t#k+1, while the auxiliary conditions
are the last nA output samples,  y(k-nA-d), . . . , y(k-d-1). Thus,
this design, referred to as the extended window design (EWD)
provides a natural match for the auxiliary conditions of the
analog and digital filters and incorporates the interpolation step
into the s- to z-domain mapping step. The “current sets” of
input and output samples used as auxiliary conditions during
the computation of the analog filter response are grouped into
the vectors uaux and yaux:

Now, (2) is used to compute the A-transform u of u(t) on
the subinterval  k-d-nA#t#k+1  of  k-m#t#k+1 in terms of the
vector uaux defined in (6). Thus, the A-transform interpolation
operator C(m,nA,d) is defined by the following matrix relation

As the A-transform reduces the computation of the response of
the analog filter H(s) to a linear algebra problem, a first general
expression for the A-transform  y = Ay(t) is obtained through
matrix inversion,

The parameters G and F in (8) are calculated once and for all

Fig. 3.  Optimization diagram for the digitizing of the compensator
(1") with transfer function  H(s): distribution of the digitizing error for
nA=7, m=9, a delay range 0<d<1, and a prediction range  -0.2 <d< 0.

for any given transfer function H(s). Then, the inverse A-
transform (4) is to be applied to both sides of (8) in order to
yield y(t) at any desired time instant k-nA-d#t#k+1. In particu-
lar, the choice t=k-d provides the main recursive equation

Likewise, (4) and (8) will be used in Section III below to
compute any predicted values within the interval  k # t # k+1.

 B.  The Matched-Pole Frequency Sampling Design

While the above time-domain interpolation method
provides the solution for the implementation of an output
prediction, the derivation of the main recursive equation (9)
requires an efficient search for the time shift d that minimizes
the digitizing error. This task will be achieved with an algo-
rithm originally proposed in [5] as a modified version of the
conventional IIR frequency sampling design [4]. This algo-
rithm, referred to as the matched-pole (MP) frequency sam-
pling design, is outlined below in order to provide a form
suitable for the general case of a fractional time shift  d.

First, the EWD problem is reformulated as the discrete-
domain approximation of the frequency response of a system
whose transfer function is

where H(s) was defined in (1). This approximation of H1(s) by

is a problem of complex approximation that is solved by
frequency-domain interpolation with the interpolation points
placed on the unit circle. Since both H1(s) and HD(z) are
analytical rational functions, the properties of analytic func-
tions imply some rather powerful constraints on their behavior
within their respective regions of convergence. The MP design
uses a consequence of the constraints on the frequency re-
sponses H1(jT) and HD(ejT) that relates the poles of H(s) and
HD(z) through the expression .
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Fig. 4. Magnitude responses – thick solid line: |H(jT)| and |HD(ejT)| of
the optimal EWD compensator designed with d=0.953  and using the
five frequency knots shown as small circles (the two plots practically
coincide);  dashed line: EWD compensator calculated with d = 0; thin
solid line: compensator calculated with the bilinear transformation.

The proposed numerical design is based on this pole-matching
condition and aims at matching the two frequency responses
within a frequency range [T0,TM] that contains most of the
spectral energy of H1(jT). The set of algebraic equations

is solved for the (m+1) coefficients pn defined in (10), while
DD(z) is chosen with the same coefficients gk , k=1, ..., nA , as
those found in the vector g in (9). Here, M  and the frequency
knots T0, . . . , TM are chosen in the same way as in (2), that is
such that (11) has a unique solution. The time shift d makes the
output yD(k), calculated at the current time t=k, actually
represent the analog output at the time instant t=k-d.

Considering the above modified form of the MP design, the
proof of its rigorous equivalence with the EWD method
follows exactly the same lines as the proof given in [5] for the
original forms of these two designs. Accordingly, the MP
design determines precisely the same numerator coefficients pn

as found in the vector f in the EWD equation (9).
Finally, it is worth noting the close relationship between the

EWD and MP filter design methods and the traditional WLS
design [4]. The latter minimizes the expression

where pR and gR are the unknown coefficients of the numerator
and denominator of HD(z), Tn are the frequency knots within
[0,B], and w(T) is a user defined weighting function. Yet, when
approximating the transfer function of a continuous system by
a discrete transfer function, the analyticity properties discussed
above state that the denominator of  HD(z) can be uniquely
computed through the mapping . Numerous tests
have shown that the discrete equivalents to continuous transfer
functions obtained with the  EWD/MP approach yield about
the same digitizing errors as the discrete equivalents provided
by iterative WLS designs.

Fig. 5. Digitizing errors ED(T) of the three digital equivalents to the
transfer function H(s) shown in Fig 4 – thick solid line: the optimal
EWD compensator HD(ejT)  (nA=7, m=9,  d=0.953);  dashed line:
EWD compensator calculated with d = 0; thin solid line: compensator
calculated with the bilinear transformation.

 C.  Minimization of the Digitizing Error

The proposed optimization deals only with the derivation
(11) of the numerator coefficients pn defined in (10), which are
the same as those found in the vector f in (9). This computation
is to be done repeatedly for values of the time shift d within an
interval [-1,1]. At this time, there is no need for the complete
EWD procedure that involves the interpolation (2) as well.
Therefore, the above discussed equivalence between the EWD
and MP methods and the simple form of (11) led to  the MP-
based search procedure that minimizes the digitizing error
ED(T) = 20 log10(|e

-jdT H(jT)-HD(ejT)|). A fast numerical
algorithm was built by using the matrix form corresponding to
the MP equation (11) and the fact that most of the components
in (11) and  ED(T) do not change as  d changes. The algorithm
was further improved by using to advantage the symmetry of
the complex approximation dealing with rational functions with
real coefficients.

A typical diagram displaying the distribution of the
digitizing error ED(T) is shown in Fig. 2 for a given order, nA,
of the continuous transfer function H(s)  (nA=8),  a delay range
0 < d < 2,  and a prediction range  -1 < d < 0. This diagram
supports previous notifications about improved performance of
the discrete transfer function by increasing the number of
coefficients in the numerator (i.e., increasing m) while keeping
nA unchanged. This fact was mentioned in [1] and [2] without
discussing the reasons why, and only a partial justification was
presented in [3] and [5]. A more detailed justification was
given above, at the end of the introductory part of this section.
But the most important result is the error decrease found in the
valleys in-between the input sampling times. These valleys are
deep enough to make a difference in either case, delay or
advance; also, they are not excessively narrow, thus allowing
for the use of processors with reduced-word arithmetic. This
result represents a substantial improvement with respect to the
previously reported error decrease through integer delay [3],
[5]. For example, this can be verified by checking the error
values at abscissa points 0 and -1 in Fig.2.
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Fig. 6. Response u(t) of the compensator (1") in the closed-
loop  system to a step disturbance applied to the plant input –
small circles:  discrete output of the optimal EWD compensa-
tor HD(ejT); solid line:  response of the continuous model H(s).

Moreover, the minimum in the prediction interval brings an
additional advantage with respect to the method proposed in
[6] where no optimization was performed.

III.  DESIGN EXAMPLE

The proposed optimal digitizing method and a few imple-
mentation options are illustrated on the design by emulation of
a regulator with state estimator and integral control. The input-
output transfer function of the plant Y(s)/U(s) = Ha(s)Hb(s) is
described by a wideband block with the transfer function

followed by a narrowband block with the transfer function

A balanced model reduction [9] was applied to a state-space
representation of the resulting transfer function Ha(s)Hb(s) to
provide the matrices A, B, C, and D  (D = 0), corresponding to

The regulator system with state estimator and integral control
[10] is designed for constant reference input (r = 0).The
following signals are defined: u(t) – the control signal, w(t) –
a step disturbance, y(t) – the output of the plant, x(t) – the state
vector of the plant,  xo(t) – the state vector of the state estima-
tor, and xi (t) – the output of the error integrator. The system is
described by the following state equations

(13)

where the row-vector K, the scalar K i , and the column-vector
L were computed by slightly modifying the standard design
[10] in order to ensure the stability of the compensator.

Fig. 7. Time-domain error of the response u(t) of the optimal EWD
compensator HD(ejT) shown in Fig. 6 –  small circles: error at the
sampling times; solid line: interpolation error with respect to the
actual response of the continuous model H(s).

In (13), y(t) is the input of the compensator, while its output is
u(t). Thus, both the EWD and the MP optimization design were
applied to the following compensator transfer function

First, the MP optimization described in Section II-C was done
on (1") with a sampling period  T = 0.5 and a length of the
input interpolation interval  m = 9. Thus, a time normalization
to the sampling period T was performed and the minimax
procedure was applied for a wide range of the normalized time
shift parameter d. Each point of the resulting diagram in Fig. 3
was obtained by solving a pre-processed form of (11) as
described in Section II-C and calculating the maximum of the
digitizing error ED(T) = 20 log10(|e

-jdT H(jT)-HD(ejT)|) within a
frequency interval T0<T<0.6 Tf  (where T0 is the first fre-
quency knot and Tf =B/T is the folding frequency). Fig. 3 is
restricted to the delay range 0 < d < 1 and the prediction range
-0.2<d<0, and exhibits the two optimum time shifts corre-
sponding to a delay  d = 0.953  and a prediction  d=-0.065. The
discrete model (10) designed with  d =-0.065 has the transfer
function HD(z) with a factor  -7.5597,  numerator zeros at
0.299443, -0.339056 ± j 0.324061,  0.022866 ± j 0.39033,
0.635847 ± j 0.051755,  0.245423 ± j 0.237634, and seven
poles defined by the expression ,  n=1,2,...,7,
where T=0.5 and  sn are the poles of  H(s) in (1") . The remain-
ing two poles are placed at  z = 0.

The frequency response of the compensator defined in (1")
is compared in Fig. 4 to the frequency responses of a few
discrete realizations. It is worth mentioning that the magnitude
plot |HD(ejT)| of the optimal EWD compensator corresponding
to the minimum shown in Fig. 3 practically coincides with the
plot |H(jT)| of the continuous model. By contrast, the sensibly
larger digitizing errors of other designs are apparent even on
the magnitude plots. This is the case with both the EWD
compensator calculated with d = 0 and the compensator
calculated with the bilinear transformation. More details on the
digitizing error ED(T) can be seen in Fig. 5.



4440

(9')

(14)

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006

Fig. 8. Closed-loop system response y(t) to a unit-step disturbance
applied to the input of the plant – thick solid line: y(t) for the
continuous design with compensator (1"); thin solid line: y(t) obtained
with the discrete optimal EWD compensator HD(ejT); dashed line with
small circles: y(t) corresponding to the direct digital system design.

Another look at the performance of the optimal EWD
compensator is done by using the closed-loop response y(t) of
the system (13) to a unit-step disturbance applied at the input
of the plant. The signal  y(t) and its sampled sequence were
applied, respectively, to H(s) defined by (1") and the above
HD(z).  The comparison is done in Figs. 6 and 7. In Fig. 6, the
small circles that represent the response of the EWD model
HD(z) to y(kT) practically coincide with the response of the
continuous compensator H(s). This is supported by the very
small error exhibited by the small circles in Fig. 7. In addition,
the solid line in Fig. 7 represents the interpolation error with
respect to the actual response of the continuous model H(s).

Finally, the above design of the discrete compensator with
the optimal EWD method is compared in Fig. 8 with  the direct
digital system design [11]. Here, a simple application of the
proposed method to the state-variable system design was
considered. Specifically, two discrete equations were imple-
mented: the main recursive equation

and

where the vectors gp and fp were obtained from the matrices G
and F in (8), by applying the inverse A-transform (4) to  y in a
particular form of (8) restricted to the prediction interval shown
in Fig. 1. Accordingly, the variable J  in (4) was replaced by Jf

in Fig. 1, whereas the vector yaux was augmented with the last
computed output sample yk in (9'). The inverse A-transform
was calculated at only one point  Jf = 0, corresponding to the
middle of the prediction interval. This prediction alleviates the
effect of the zero-order hold in the D/A converter.

IV.  CONCLUSION

The focus in this paper was on the proposed optimal
digitizing procedure which provides the main recursive
equation (9) and, optionally, either a second equation (14) that
computes an output value corresponding to some future time,

or a few coefficients of the Chebyshev polynomial expansion
contained in the vector y in (8). The accuracy of (9) reduces the
round-off error propagation during the recursive computation
of the output samples. At the same time, (8) and (14) can be
implemented with reduced-word arithmetic thus reducing the
computational requirements.

This problem of computing accurate discrete equivalents to
continuous models is encountered, for example, in the design
of model following systems, controllers with prediction, or
compensators with integrators and state estimation. The latter
was used in Section III only in order to illustrate the fact that
the high accuracy of the proposed method, together with its
prediction feature, provides a fully satisfactory controller even
in the presence of a zero-order hold. Moreover, the present
technology allows for a relatively inexpensive implementation
of the above mentioned polynomial expansion, say, with three
coefficients, in the form of a hybrid controller involving both
continuous-time and discrete-time signals. It is expected that
this solution would provide a response close to that one of a
continuous controller. Finally, future work will evaluate the
performance of the above prediction design with zero-order
hold, the hybrid controller design, and the sampled-data design
methods that incorporate the intersample behavior but preserve
the zero-order hold constraint on the control signal [12].
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