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Abstract — In digital control systems, the discrete
equivalentsto analog models are traditionally designed to
process sequences of input and output samples such that
each new output value accurately reproduces the corre-
sponding analog output at the current samplingtime. This
paper addresses the fact that the performance of the
resulting discreteequivalentsis decreased by theinherent
phase delay of analog models that alters the correlation
between input and output sequences. Accor dingly, a mini-
max procedureisproposed toreducethedigitizingerror by
shiftingtheentireoutput sequencewith respect totheinput
sampling times. Then, a previously proposed inter polation
based digitizingmethod isused toprovide(i) asynchronous
output, or (ii) an output that compensates for both the
latency in computing the control law and the delay dueto
the zero-order hold in the D/A converter, or (iii) a state-
space design with a hybrid controller that eliminates the
zero-order hold altogether.

[. INTRODUCTION

Numerous efforts have been directed in the field of digital
signal processing toward the optimal design of infiniteimpul se
response (IIR) digital filters that approximate prescribed
magnitude and phase responses [1], [2]. This type of
frequency-domain design was also applied to the problem of
creating discrete equivalents to continuous transfer functions
with better results than the early methods that were primarily
meant for hand computations. Next, a time-domain method —
referred to asthe extended window design (EWD) of I IR filters
[3] — was shown to be equivalent to the traditional weighted
least squares (WLYS) filter design with frequency sampling [4]
by using the so-called matched-pole (MP) frequency sampling
design [5]. Yet, both the conventional and optimal digitizing
methods encountered in the design of digital control systems
suffer from limitations due to the restrictive nature of the
discreterepresentation of continuous systems. Specifically, the
finite input and output sequences that are related through
discrete equations strictly correspond to the sampled val ues of
their continuous counterparts regardless of the fact that the
continuous output incorporates aphase delay. Thisdelay of the
continuous model affects the accuracy of the current input and
output components of the discrete equations in the following
ways. (i) the input along the last few sampling periods has
littleeffect onthe current output sample, (ii) the output samples
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depend on input samples that occurred prior to the input
samples in the current equation, and (iii) the input and output
sequences are not well correlated at sampling times.

Themajor contribution of this paper istwofold. First, afast
algorithm is proposed to minimize the digitizing error by
generating the output sequence at equally spaced time instants
corresponding to a fractional time shift with respect to the
input sequence. This is the main input/output relationship
whoseaccuracy reducestheround-off error propagationduring
the recursive computation of the output. Also, a versdtile
numerical representation of the predictioninterval that covers
one sampling period beyond the current sampling time is
derived. Second, a few options become available in control
system applications which require either a current output
sample at the current sampling time, or an output that extends
over the prediction interval. The latter is highly desirable in
order to avoid the problemsrelated to the latency in computing
the control law and the delay due to the hold element of the
D/A converter.

The paper isorganized asfollows. Section Il formulatesthe
control system problem and offers a unified description of the
above mentioned mathematical tools — the EWD and MP
methods. Then, the original EWD and MP equations are
modified in the spirit of the proposed optimization method. It
is shown that both the basic discrete equations and the predic-
tion fundamentally differ from a previously proposed predic-
tion method [6]. Section |11 deals with the practical aspects of
the real-time implementation in digital control systems exem-
plified on the design of aregulator system with state estimator
and integral control. The main conclusions are summarized in
Section 1V.

Il. PROPOSED OPTIMIZATION METHOD

The problem of computing accurate discrete equivalentsto
continuous models is encountered in many digital control
applications. In contrast to the design of frequency-selective
digital filters, where additional delays up to a few sampling
periods are usually accepted, the digital control design should
not increase existing delays, rather exhibit some prediction
features. At the sametime, the control system components and
signals are characterized by low bandwidth relatively to the
folding frequency m/T, where T is the sampling period.
Accordingly, thesignal processinginvolved inthedesign of the
discrete equivalents can be efficiently done with interpolation
methods [7], in conjunction with a moderate extrapolation
based on the dimensionality theorem [8]. The latter allowsfor
an accurate extension of the signal approximation interval that
will be used in the fina implementation of the proposed
digitizing method.
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Fig. 1. Interpolation intervalsfor m=5, n,=3, and d=0.7. Definitions
of some normalized variables according to Section 11-A below: t=
thetime normalized to the sampling period; 7=theA-transformtime
variable used over the interval k-n,-d<t<k+1 in the design of the
main recursive equation; 7 = the A-transform variable of the
fractional prediction interval k<t<k+1.

In the following, the continuous system to be digitized is
defined in terms of a transfer function H(s) obtained either
directly from some physical equations or from areduced-order
state space model. The input and output signals are, respec-
tively, denoted by u(t) and y(t), without associating them at
this time with any particular control system signals. Thus, u(t)
may represent the input reference signal in amodel following
system, or the control signal itself in aplant model, or eventhe
system output — usually denoted by y(t) —likein the regulator
example in Section 1l below, where H(s) represents the
collapsed integrator and state estimator.

The EWD and MP filters defined, respectively, in [3] and
[5], are digital equivalents of a continuous model with the
transfer function

_ Y _ N

"9 = T " D @
where N(s) and D(s) are known polynomials of orders m, and
Nn,, respectively. Without loss of generality, thetimeisassumed
to be normalized to the sampling period T of the input signal,
and so the folding frequency will be «; = . The EWD filters
are the result of ajoint time-frequency method which is based
on the interpolation of the input signal u(t) at equally spaced
sampling time as shown in Fig. 1 above. In addition to target-
ing the time domain [k-m k+1], the EWD interpolation targets
a frequency domain w € [wy,wy] < [0,1] by expressing the
input signal in terms of the trigonometric polynomial

M
u(t)=E (e,coswt+P sinwt), k-m<t<k, 2
n=0
where w,, ..., w, aredistinct frequency knots of theinterpo-
lation problem. The frequency knots are usually chosen to be
equally spaced within the frequency range [w, wy] that
contains most of the spectral energy of H(jw). Also, in the
basic EWD method, M and m are chosen such that the coeffi-
cients «, and P, are obtained as the exact solution of the
algebraic equations

é(ancoswntf B,sinw,t) = u(t), (3)

where u(t,) are the values of the input signal at the sampling
times t,=k-m.,..., k. Then, the response y(t) to the approxima-
tion u(t) in (2) isto be determined and sampled to provide the
output of thediscreteequivaenttoH(s). Y et, thedetail srelated
to initial conditions and output sampling are essential in the
ensuing method.

The optimization steps that are proposed in this paper
addressthethree problems (i)-(iii) mentioned in Section |, and
can be described on Fig. 1. First, the interpolation interval is
extended to the left in order to add past input samples to the
expression of u(t) in(2) and, consequently, to the equation that
will produce the output samples. At the same time, the well-
known fact that the error of theinterpolation at equally spaced
points is significantly higher within the end segments of the
interpolation interval (see, e.g., [7]) is taken into account by
removing part of the left end from the segment of u(t) that is
used in the computation of the response y(t). Nevertheless, the
inherent delay of H(s), together with the above mentioned
dimensionality theorem, allowsfor an extension of theapproxi-
mation interval to the right of the current sampling timek, up
to (k+1). This amounts to an increase of m, while keeping n,
unchanged. Finally, themost effectiveincrease of thedigitizing
accuracy will be obtained by applying afractional time shift d
to the output sequence with respect to the actual sampling
times; both delays (d>0) and advances (d<0) are considered.

A. Numerical Generation of the Main EWD Matrix Invariants

In order to provide some output prediction, while the
accuracy of the main recursive equation of the discrete equiva
lent is obtained with a predetermined fractional time shift, the
proposed design uses continuous approximations of u(t) and
y(t). These approximations cover the interval te [k-n,-d,k+1]
and are expressed in terms of vectors of Chebyshev series
coefficients. For convenience, the mapping of squareintegrable
functions into the space of square summable vectors defined
over thefield of real numbers was referred to in [3] asthe A-
transformation. Basically, the A-transform y of asigna y(t),
t e [T,, T,], isthe vector y = Ay(t), whose components are the
coefficients of the Chebyshev series expansion of y(t). The
inverse A-transformis defined by

YO =105, 6,1, (), .. ]y, T=" (g

2 1

where ¢, (7) =cos(narc cos 7) are the Chebyshev polynomials
of the first kind, and 7 is a normalized time variable. It is
worth noting that, for any given r and length N, of y, the
explicit computation of the values ¢,(7) can be avoided, such
that only N, multiplications are required. Assume now that y
isthe A-transform of the output signal y(t) of H(s), defined in
Fig. 1 ontheinterval k-n,-d<t<k+1, correspondingto-1< r<1.
Then, this vector, restricted to the first N, coefficients may be
used to generate the vector y, of the interpolated output,

yo = Poy’ Po:Noch’ (5)
calculated at any giventimes t,={t};-1, no t€ [k-ny-dk+1].
Thei™ row of the matrix P, is [0.5,¢,(7), ¢, (%),...] andis
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Fig. 2. Typical optimization diagram: distribution of the digitizing
error for fixed n, (n,=8), adelay range 0< d< 2, and aprediction
range -1<d<0.

calculated with (4), where T,=k-n,-d, T,=k+1, 7 corresponds
tot, and -1<7<1.

Withthistechnique, theauxiliary conditionsrequired by the
computation of the response y(t) can be introduced in the form
of a matrix P, calculated with (5) for a particular set of time
instants. Specifically, atime shift d may be chosen such that
thedigital filter output y(K), calculated at the current timet=Kk,
actually representsthe anal og output corresponding to thetime
instant t=k-d. The EWD recursive generation of the current
output y(k-d) in Fig. 1 is based on the A-transform of the
response y(t), k-n,-d<t<k+1, of the analog prototype H(s) to
the interpolated signal u(t) built from the last (m+1) input
samplesup to thetimet=k. Moreover, y(t) isdetermined along
thetime segment, k-n,-d<t<k+1, whiletheauxiliary conditions
arethe last n, output samples, y(k-n,-d), . . ., y(k-d-1). Thus,
this design, referred to as the extended window design (EWD)
provides a natural match for the auxiliary conditions of the
analogand digital filtersandincorporatestheinterpol ation step
into the s- to z-domain mapping step. The “current sets’ of
input and output samples used as auxiliary conditions during
the computation of the analog filter response are grouped into
the vectors u,, and y,,:

=
>

T
aux [ Ups Upys e uk—m] 4

(6)

>

Y anx [yk—d—l > Ve-da-25 > yk—d—nA] g

Now, (2) is used to compute the A-transform u of u(t) on
the subinterval k-d-n,<t<k+1 of k-m<t<k+1 interms of the
vector u,,, defined in (6). Thus, the A-transform interpolation
operator C(m,n,,d) is defined by the following matrix relation

u=C(m,n,du, . (7)
Asthe A-transform reduces the computation of the response of
theanalog filter H(s) to alinear algebraproblem, afirst general

expression for the A-transform y = Ay(t) is obtained through
matrix inversion,

y:_Gyaloc+Fuaux' (8)

The parameters G and F in (8) are calculated once and for all
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Fig. 3. Optimization diagram for the digitizing of the compensator
(1) withtransfer function H(s): distribution of thedigitizing error for
n,=7, m=9, adelay range 0<d<1, and a prediction range -0.2 <d<O0.

for any given transfer function H(s). Then, the inverse A-
transform (4) is to be applied to both sides of (8) in order to
yield y(t) at any desired timeinstant k-n,-d<t<k+1. In particu-
lar, the choice t=k-d provides the main recursive equation

yk = _gTyaux + fTuawc‘ (9)

Likewise, (4) and (8) will be used in Section IIl below to
compute any predicted valueswithintheinterval k <t < k+1.

B. The Matched-Pole Frequency Sampling Design

While the above time-domain interpolation method
provides the solution for the implementation of an output
prediction, the derivation of the main recursive equation (9)
requires an efficient search for the time shift d that minimizes
the digitizing error. This task will be achieved with an algo-
rithm originally proposed in [5] as a modified version of the
conventional IR frequency sampling design [4]. This algo-
rithm, referred to as the matched-pole (MP) frequency sam-
pling design, is outlined below in order to provide a form
suitable for the general case of afractional time shift d.

First, the EWD problem is reformulated as the discrete-
domain approximation of the frequency response of a system
whose transfer function is

H(s) = e " H(s) , (1)
where H(s) was defined in (1). This approximation of H,(s) by
Py z" +plz""1 +...+p,

Np@)
H(z) = =2
D Zm—nA (ZnA + glznA—l .. +gnA) DD(Z) (10)

is a problem of complex approximation that is solved by
frequency-domain interpolation with the interpolation points
placed on the unit circle. Since both H,(s) and H,(2) are
analytical rational functions, the properties of analytic func-
tionsimply some rather powerful constraints on their behavior
withintheir respectiveregionsof convergence. The MP design
uses a consequence of the constraints on the frequency re-
sponses H, (jw) and H(€) that relates the poles of H(s) and
Hp(2) through the expression z, = e™ .
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Fig. 4. Magnitude responses—thick solid line: |H(j w)| and [H,(€)| of
the optimal EWD compensator designed with d=0.953 and using the
fivefrequency knots shown as small circles (the two plots practically
coincide); dashed line: EWD compensator calculated withd = 0; thin
solid line: compensator calculated with the bilinear transformation.

The proposed numerical designisbased on thispole-matching
condition and aims at matching the two frequency responses
within a frequency range [w,, @), that contains most of the
spectral energy of H,(j w). The set of algebraic equations
Ny('®) = e7* D (™) H(jw), n=0,...,M, (11)

is solved for the (m+1) coefficients p, defined in (10), while
Dp(2) is chosen with the same coefficients g, k=1, ..., n,, as
those found in the vector g in (9). Here, M and the frequency
knots @, . . ., w, ae choseninthe sameway asin (2), that is
such that (11) has aunique solution. Thetime shift d makesthe
output yy(k), calculated at the current time t=Kk, actualy
represent the analog output at the time instant t=k-d.

Considering theabove modified form of the MP design, the
proof of its rigorous equivalence with the EWD method
follows exactly the same lines as the proof givenin [5] for the
origina forms of these two designs. Accordingly, the MP
design determines precisely the same numerator coefficientsp,
as found in the vector f in the EWD equation (9).

Finally, itisworth noting the closerel ationship between the
EWD and MP filter design methods and the traditional WLS
design [4]. The latter minimizes the expression

M

min E w(,)

-jdo, . j 2
e’ T"H(jw,) - Hye' ™),
Pys & n-o0 b

(12)

where p, and g, are the unknown coefficients of the numerator
and denominator of H,(2), w, are the frequency knots within
[0,7], and W( w) isauser defined weighting function. Y et, when
approximating the transfer function of a continuous system by
adiscretetransfer function, theanalyticity propertiesdiscussed
above dtate that the denominator of Hy(2) can be uniquely
computed through the mapping z, = e ‘. Numerous tests
have shown that the di screte equival entsto continuoustransfer
functions obtained with the EWD/MP approach yield about
the same digitizing errors as the discrete equivalents provided
by iterative WLS designs.

NN
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Fig. 5. Digitizing errors E,(w) of the three digital equivaents to the
transfer function H(s) shown in Fig 4 — thick solid line: the optimal
EWD compensator Hp(€“) (n,=7, m=9, d=0.953); dashed line:
EWD compensator cal culated with d = O; thin solid line: compensator
calculated with the bilinear transformation.

C. Minimization of the Digitizing Error

The proposed optimization deals only with the derivation
(11) of the numerator coefficients p, defined in (10), which are
the same asthose found inthe vector f in (9). Thiscomputation
isto be done repeatedly for values of the time shift d within an
interval [-1,1]. At thistime, there is no need for the complete
EWD procedure that involves the interpolation (2) as well.
Therefore, the above discussed equival ence between the EWD
and MP methods and the simple form of (11) led to the MP-
based search procedure that minimizes the digitizing error
Ep(w) = 20 log,(le’ H(jw)-Hp(e9)]). A fast numerical
a gorithm was built by using the matrix form corresponding to
the MP equation (11) and the fact that most of the components
in(11) and E(w) do not change as d changes. The algorithm
was further improved by using to advantage the symmetry of
the complex approximation dealing with rational functionswith
real coefficients.

A typical diagram displaying the distribution of the
digitizing error E(w) isshown in Fig. 2 for agiven order, n,,
of the continuoustransfer function H(s) (n,=8), adelay range
0< d<2, andaprediction range -1 <d < 0. This diagram
supportspreviousnotificationsabout improved performance of
the discrete transfer function by increasing the number of
coefficientsin the numerator (i.e., increasing m) while keeping
n, unchanged. This fact was mentioned in [1] and [2] without
discussing the reasonswhy, and only a partial justification was
presented in [3] and [5]. A more detailed justification was
given above, at the end of theintroductory part of this section.
But the most important result isthe error decrease found in the
valleysin-between theinput sampling times. Thesevalleysare
deep enough to make a difference in either case, delay or
advance; also, they are not excessively narrow, thus alowing
for the use of processors with reduced-word arithmetic. This
result represents a substantial improvement with respect to the
previoudly reported error decrease through integer delay [3],
[5]. For example, this can be verified by checking the error
values at abscissapoints0 and -1 in Fig.2.
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Fig. 6. Response u(t) of the compensator (1") in the closed-
loop system to a step disturbance applied to the plant input —
small circles. discrete output of the optimal EWD compensa-
tor Hy(€“); solid line: response of the continuous model H(s).

Moreover, the minimum in the prediction interval brings an
additional advantage with respect to the method proposed in
[6] where no optimization was performed.

1. DESIGN EXAMPLE

The proposed optimal digitizing method and a few imple-
mentation options areillustrated on the design by emulation of
aregulator with state estimator and integral control. Theinput-
output transfer function of the plant Y(s)/U(s) = H(S)H,(S) is
described by awideband block with the transfer function

H,(s) =
167 (s +16) (s2 + 5+ 16)
(s2+25+16)(s 2 +4s+16)(s>+405+1000)(s 2+205+600)(s>+25+512)

followed by a narrowband block with the transfer function
H(s)= — 95
(s+1)(s+0.5)
A balanced model reduction [9] was applied to a state-space
representation of the resulting transfer function H,(s)H,(s) to
providethe matrices A, B, C,and D (D =0), correspondingto

(5+10.59)(52-24.275+226.59)(s2+1.0075+15.99)

H(s) =
341.6(s+1)(s +0.5)(s2+2.015+15.89)(s 2 +4.0625+16.19)

13

The regulator system with state estimator and integral control
[10] is designed for constant reference input (r = 0).The
following signals are defined: u(t) — the control signal, w(t) —
astep disturbance, y(t) —the output of the plant, x(t) —the state
vector of the plant, x,(t) —the state vector of the state estima-
tor, and x; (t) —the output of the error integrator. The systemis
described by the following state equations

x=Ax+Bu+Bw

x,=(A-LC-BK)X, - BK;x +Ly 3

X, =-y
u=-Kx -K x,,

where the row-vector K, the scalar K ;, and the column-vector
L were computed by dightly modifying the standard design
[10] in order to ensure the stability of the compensator.

Error [dB]

0 5 10 15 20 25 30
Time [samples]

Fig. 7. Time-domain error of the response u(t) of the optimal EWD
compensator Hy(€“) shown in Fig. 6 — small circles: error at the
sampling times; solid line: interpolation error with respect to the
actual response of the continuous model H(s).

In (13), y(t) istheinput of the compensator, whileits output is
u(t). Thus, both the EWD and the M P optimization design were
applied to the following compensator transfer function
U
H(s) T
(1)
-83.76(s+23.28)(5+5.26)(s2+6.2285+18.14)(s%+1.815+0.843)
s(s2+11.45+45.45)(s2+ 125 +45)(s2 + 11.45+41.49) '

First, the M P optimization described in Section 11-C was done
on (1") with a sampling period T = 0.5 and a length of the
input interpolationinterval m= 9. Thus, atime normalization
to the sampling period T was performed and the minimax
procedure was applied for awide range of the normalized time
shift parameter d. Each point of the resulting diagraminFig. 3
was obtained by solving a pre-processed form of (11) as
described in Section 11-C and cal culating the maximum of the
digitizing error Ey(w) = 20 log,(|e* H(j w)-Hp(€)]) within a
frequency interval w,<w<0.6 «; (Where w, is the first fre-
guency knot and «; = #/T is the folding frequency). Fig. 3 is
restricted to the delay range O < d < 1 and the prediction range
-0.2<d<0, and exhibits the two optimum time shifts corre-
spondingto adelay d=0.953 and aprediction d=-0.065. The
discrete model (10) designed with d =-0.065 has the transfer
function Hy(2) with a factor -7.5597, numerator zeros at
0.299443, -0.339056 + j 0.324061, 0.022866 + j 0.39033,
0.635847 + j 0.051755, 0.245423 + j 0.237634, and seven
poles defined by the expresson z, = e n=12,..7,
whereT=0.5and s, arethepolesof H(s) in(1") . Theremain-
ing two polesareplaced at z=0.

Thefrequency response of the compensator definedin (1)
is compared in Fig. 4 to the frequency responses of a few
discreterealizations. It isworth mentioning that the magnitude
plot [Hy(€“)| of the optimal EWD compensator corresponding
to the minimum shown in Fig. 3 practically coincides with the
plot |H(j w)| of the continuous model. By contrast, the sensibly
larger digitizing errors of other designs are apparent even on
the magnitude plots. This is the case with both the EWD
compensator calculated with d = 0 and the compensator
calculated with the bilinear transformation. Moredetailsonthe
digitizing error E,(w) can be seenin Fig. 5.
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Fig. 8. Closed-loop system response y(t) to a unit-step disturbance
applied to the input of the plant — thick solid line: y(t) for the
continuousdesignwith compensator (1"); thinsolidline: y(t) obtained

with thediscrete optimal EWD compensator Hy(€“); dashed linewith
small circles: y(t) corresponding to the direct digital system design.

Another look at the performance of the optimal EWD
compensator is done by using the closed-loop response y(t) of
the system (13) to a unit-step disturbance applied at the input
of the plant. The signal y(t) and its sampled sequence were
applied, respectively, to H(s) defined by (1") and the above
Hp(2). The comparisonisdoneinFigs. 6 and 7. In Fig. 6, the
small circles that represent the response of the EWD model
Hp(2) to y(KT) practically coincide with the response of the
continuous compensator H(s). This is supported by the very
small error exhibited by the small circlesin Fig. 7. In addition,
the solid line in Fig. 7 represents the interpolation error with
respect to the actual response of the continuous model H(s).

Finally, the above design of the discrete compensator with
the optimal EWD method iscompared in Fig. 8 with thedirect
digital system design [11]. Here, a simple application of the
proposed method to the state-variable system design was
considered. Specifically, two discrete equations were imple-
mented: the main recursive equation

Ve = ~8 Vo 11U, (9)

and
- _ T y T 14
yp - gp yaux + fp uaux’ ( )

where the vectors g, and f, were obtained from the matrices G
and Fin (8), by applying the inverse A-transform (4) to yina
particular formof (8) restricted to the predictioninterval shown
inFig. 1. Accordingly, the variable 7 in (4) wasreplaced by 7
in Fig. 1, whereas the vector y,,, was augmented with the |ast
computed output sample y, in (9'). The inverse A-transform
was calculated at only one point z; = 0, corresponding to the
middle of the predictioninterval. Thisprediction alleviatesthe
effect of the zero-order hold in the D/A converter.

IV. CONCLUSION

The focus in this paper was on the proposed optimal
digitizing procedure which provides the main recursive
equation (9) and, optionally, either a second equation (14) that
computes an output value corresponding to some future time,

or afew coefficients of the Chebyshev polynomial expansion
contained inthevector y in (8). Theaccuracy of (9) reducesthe
round-off error propagation during the recursive computation
of the output samples. At the same time, (8) and (14) can be
implemented with reduced-word arithmetic thus reducing the
computational requirements.

Thisproblem of computing accurate discrete equivalentsto
continuous models is encountered, for example, in the design
of model following systems, controllers with prediction, or
compensators with integrators and state estimation. The latter
was used in Section |11 only in order to illustrate the fact that
the high accuracy of the proposed method, together with its
prediction feature, providesafully satisfactory controller even
in the presence of a zero-order hold. Moreover, the present
technology allowsfor arelatively inexpensive implementation
of the above mentioned polynomial expansion, say, with three
coefficients, in the form of a hybrid controller involving both
continuous-time and discrete-time signals. It is expected that
this solution would provide a response close to that one of a
continuous controller. Finally, future work will evaluate the
performance of the above prediction design with zero-order
hold, the hybrid controller design, and the sampled-datadesign
methodsthat incorporatetheintersamplebehavior but preserve
the zero-order hold constraint on the control signal [12].
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