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ABSTRACT 
 

The proposed optimal algorithm for the digitizing of analog filters 

is based on two existing filter design methods: the extended 

window design (EWD) and the matched–pole (MP) frequency 

sampling design. The latter is closely related to the filter design 

with iterative weighted least squares (WLS). The optimization is 

performed with an original MP design that yields an equiripple 

digitizing error. Then, a drastic reduction of the digitizing error is 

achieved through the introduction of a fractional time shift that 

minimizes the magnitude of the equiripple error within a given 

frequency interval. The optimal parameters thus obtained can be 

used to generate the EWD equations, together with a variable 

fractional delay output, as described in an earlier paper. Finally, in 

contrast to the WLS procedure, which relies on a “good guess” of 

the weighting function, the MP optimization is straightforward. 

 

Index Terms — IIR digital filters, interpolation, sampling rate 

conversion, variable fractional delay, approximation methods 

 

 

1. INTRODUCTION 
 

The design of infinite impulse response (IIR) digital filters is done 

either by digitizing a prototype analog filter or directly in the 

discrete domain with some computer–aided iterative procedure. A 

reason for using analog prototypes is that the design of analog 

filters is a well–established subject that includes not only closed 

form solutions and highly advanced analog approximation 

techniques, but also well–tested computer programs to carry out 

the designs. Also, many applications are defined in terms of analog 

transfer functions, but are implemented digitally for better 

accuracy and reliability. On the other hand, the computer–aided 

iterative IIR filter design is now an attractive alternative due to the 

tremendous computational power available to the designer. This 

type of design allows for a wider variety of user–defined frequency 

responses and, usually, relies on iterative weighted least squares 

(WLS) optimization techniques to minimize the error between the 

desired frequency response and the frequency response of the 

computer generated filter [1], [2]. Obviously, the WLS method can 

be used to digitize analog prototypes as well. Yet, the main 

shortcoming of this approach is the need for repeated trials with 

various weighting functions aiming at the minimization of the 

Chebyshev norm of the digitizing error. The present paper 

addresses this problem by proposing a new optimal algorithm for 

the approximation of analog filters by discrete filters. 

First of all, Section 2 presents an original analysis of two 

existing interpolation techniques that provide a bridge between the 

analog prototype methods and the WLS approach: the extended 

window design (EWD) of IIR discrete equivalents of analog filters 

[3], and the so–called matched–pole (MP) frequency sampling 

design [4]. The EWD method is developed with an interpolation–

based time domain algorithm, whereas the MP design is done with 

a frequency domain interpolation. 

The main focus is on the EWD approach for both theoretical 

and practical reasons. First of all, it is argued that the time domain 

features of the EWD approach justify the search for some optimal 

value of a time-shift parameter that, when incorporated into the 

input interpolation process, will compensate for the input–output 

time delay due to the typical phase response of the analog 

prototype. An even more important feature of the EWD filters is 

the natural way of generating intersample output values that leads 

to the implementation of variable fractional delay (VFD) filters [5]. 

This procedure that has been developed in [6] is beyond the scope 

of this paper. 

The EWD approach does not lend itself to a simple 

minimization of the digitizing error. Yet, since the EWD and MP 

filters are shown in Section 2 below to be identical, the 

optimization can be performed with the MP method. First, a fast 

MP algorithm is presented in Section 3 for the search of the design 

parameters that produce an equiripple digitizing error. Then, at the 

end of Section 3, another MP algorithm determines the value of the 

fractional time shift τ that minimizes the equiripple digitizing error 

within a predefined frequency interval. The actual transfer function 

of the digital filter is explicitly computed only once, at the very end 

of the optimization process. The convergence of the optimization 

algorithm, as well as the related problem of the best approximation 

in the sense of Chebyshev norm, is also discussed. The 

implications of the optimal time shift on the conventional WLS 

optimization techniques are mentioned in the concluding Section 4. 

Finally, it is shown that as soon as the optimal design parameters 

are selected, they can be used to implement variable fractional 

delay (VFD) filters with the EWD method. 

 

2. PRELIMINARIES 
 

Throughout the paper, the time is normalized to the sampling 

period, and so the folding frequency is ωf = π. The signals x(t) and 

y(t) are the input and output of the analog filter defined by 
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where b(s) and a(s) are known polynomials. The digitizing 

problem consists in finding a transfer function, 
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such that the frequency response HD(ejω) represents a “good 

approximation” of HA(jω). The input and output of the designed 

digital filter are denoted below by xD[k] and yD[k], respectively, 

while the sampled values of x(t) and y(t) are x(k) and y(k). 
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Fig. 1.  Block diagram illustrating the extended window design 

(EWD), where SC and HA(s) are combined into just one block with 

the same number of system modes as HA (s). 

 

2.1. The Extended Window Design of IIR Digital Filters 

 

The basic idea of this design is illustrated in Fig. 1, where the 

continuous signal reconstruction block SC is an (m+1)–point 

interpolator. Fig. 2 shows the recursive generation of the output 

y[k] from the response y(t) of the analog prototype HA(s) to the 

(virtual) signal xC(t) that interpolates the last (m+1) input samples 

x[k] up to the current time t=k. Yet, the seemingly natural 

implementation that would process the two internal blocks SC and 

HA(s) as individual blocks is unacceptable. Indeed, this would 

increase the order of the final digital filter HD(z) to nD=nA+m, and 

significantly alter the frequency response HD(ejω) because of the 

cascade interconnection. By contrast, the EWD approach [3], [4], 

is characterized by a particular choice of the auxiliary conditions 

needed to calculate the response y(t) of HA(s). These conditions, 

represented in Fig. 2 by stars, are the last nA output samples 

grouped in the vector yaux = [y(k–nA),..., y(k–1)], for τ = 0, or yaux = 

[y(k–τ–nA),..., y(k–τ–1)], for  0 < τ < 1. It is worth noting that the 

fractional time-shift parameter, τ, can be easily introduced in the 

design through the interpolator, as shown below in (4) and (4’). In 

either case (i.e., τ = 0, or  0 < τ < 1), this design provides a natural 

match for the initial conditions of the analog and digital filters, and 

so it incorporates the interpolation step into the s- to z-domain 

mapping step. Thus, the two internal blocks SC and HA(s) in Fig. 1 

are now processed together, rather than cascaded. Consequently, it 

was proven in [3] and [4] that the denominators a(s) and g(z–1) in 

(1) and (2) are related by the expressions 
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The reason that this method is referred to as the extended 

window design is that, at each current time k, the interpolation time 

window extends to the left of the current time  k  along a segment 

of length m ≥ nA. Nevertheless, it is worth noting that the actual 

interpolation is transparent to the designer. Specifically, the virtual 

continuous signal xC(t) is built sequentially, one sampling period at 

a time, from the last (m+1) input samples. The design parameter m 

is chosen to be larger than nA  by two to five units, according to a 

trade-off between the IIR filter complexity and the digitizing 

accuracy.  In this paper, m will be always an odd number for the 

sake of a more concise presentation. Thus, a new integer 

parameter, M, can be introduced as M = (m+1)/2. In addition, a 

distinction is made between the vector w of the frequency nodes, 

which cancel the digitizing error, {wn | 0 < w n< π, n = 1, …, M}, 

and the much larger vector ω of frequencies {ω | 0 < ω < π} that 

are used for the numerical computation of the digitizing error. 

The design starts with the continuous–time reconstruction of 

the input sequence through the interpolation expression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Interpolation intervals for m = 6, nA= 4, and τ = 0.7. The 

thick line of y(t), k–1 < t < k, yields an optional interpolated output. 
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which includes an optional time shift τ. The parameter  τ  may be 

chosen to be zero, or optimized according to the procedure 

proposed in Section 3.3 below. The expression xC(t) is uniquely 

computed from the (m+1) input samples x(ℓ), ℓ = k–m, …, k,  by 

solving (m+1) linear algebraic equations for the coefficients cn , 
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Finally, an efficient numerical method [3] expresses the 

response y(t) of the analog filter to xC(t) in terms of matrix 

invariants that provide intersample values [6] but, also, relate the 

input vector [x(k–m), ..., x(k)] to the vector [y(k–τ–nA),..., y(k–τ–1)] 

of auxiliary conditions. The result is the EWD transfer function 

HEWD(z) = HD(z). Both the numerical generation of the EWD filter 

[3] and the closed–form solution [4] provide the following: 

Theorem: The real–time implementation of the EWD transfer 

function (2), possibly designed with an optional time shift τ, is of 

order m ≥ nA, and has  nA poles, zn , related to the poles pn of the 

analog prototype by zn = ,np
e  n = 1, …, nA, while the remaining 

(m–nA) poles are placed at z = 0. The current discrete output 

corresponds to the relationship  yEWD[k] = y(k – τ).  

 

2.2. The importance of the EWD approach 

  

The interest in the EWD method is due to three reasons: (i) 

available closed–form solutions [4] can be used to build accurate 

benchmark examples, (ii) the time–domain form of the design 

reveals ways toward the reduction of the digitizing error, and (iii) 

the EWD interpolation algorithms provide a simple and accurate 

computation of interpolated output values [3], [6]. For example, 

the time–domain features of the EWD approach, illustrated in Fig. 

2, justify the search for some optimal value, τopt, of a time-shift 

parameter, τ . Indeed, the need for this optimization stems from the 

fact that both the conventional and optimal digitizing methods 

suffer from limitations due to the restrictive nature of the discrete 

representations of continuous systems. Specifically, the difference 

equations of IIR filters are traditionally designed as if the input and 

output filter sequences were in strict correspondence with the 

sampled values of their continuous counterparts. This design does 

not reflect the fact that the continuous output incorporates a time 

delay caused by the typical phase response of the analog prototype. 
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Fig.3. The function hτ(t) with compact support, t є [0,nA], for nA=7. 

 

 

The delay affects the accuracy of the current input and output 

components of the discrete equations in the following ways: 

 (i) the last few input samples have little effect on the current 

output sample, (ii) the input and output sequences are not well 

correlated at sampling times, and (iii) the output samples also 

depend on input samples that occurred prior to the input samples in 

the current equation. Thus, it is apparent that, in the context of the 

EWD method, there should be an optimal time shift that minimizes 

the digitizing error. 

While the EWD filters are essentially designed in the time 

domain, the digitizing error is defined in the frequency domain and 

is controlled by the M parameters {wn  | n = 1, …, M} and the time 

shift τ. The optimization problem is addressed in Section 3. 

 

2.3. The Matched–Pole Frequency Sampling Design 
 

The EWD optimization proposed in Section 3 below is based on 

the identity between the EWD filters and the filters designed with 

the so–called matched–pole (MP) method [4]. The latter is related 

to the frequency sampling method for IIR filter design [2, pp. 218–

221] that is used to find a discrete transfer function (2) whose 

frequency response interpolates a given complex expression 

HA(jω) at equally spaced frequency points. This method consists in 

solving the equations 
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for the (nA+m) unknown coefficients in (2). The reason given in [2] 

for the inaccurate results is the poor estimation of the denominator 

g(z–1), which may even produce an unstable filter. 

By contrast, the digitizing of analog filters can be done with a 

predetermined denominator g(z–1). Indeed, since both HA(s) and 

HD(z) defined in (1) and (2) are analytic rational functions, the 

properties of analytic functions impose some rather powerful 

constraints on their behavior within the respective regions of 

convergence. One consequence of these constraints is the 

relationship zn = np
e mentioned in the above Theorem. In general, 

given an analog system, the Laplace transforms of all the system 

modes and signals have the poles related to the poles of their z-

transform counterparts by the s–to–z domain mapping  z = .s
e

Accordingly, the digitizing of filters by frequency sampling can be 

reduced to the computation of the numerator  f (z
–1)  in (2), while 

the denominator  g (z
–1)  is fixed and defined by (3). The design 

parameters  nA , m ,  and  τ  are chosen to be the same as those of 

the EWD filter, while (5) is replaced by  m+1 = 2M  equations, 

 ( ) ( )A ( ) , 1, ..., ,n
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 where the only unknowns are the (m+1) coefficients of  f (z–1). 

With the poles of  g(z–1)  rigorously matched to the poles of 

a(s), the IIR filter design has now become an FIR frequency–

sampling problem that is referred to as the matched-pole (MP) 

frequency sampling design. 

The conceptual difference between the two types of 

interpolation represented by (5) and (6) can be better understood 

by analyzing the properties of the function 
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which is directly related to the right-hand side of (6). 

Property 1:  Hτ (s) is an entire function of the complex variable 

s, since b(s) is a polynomial and the pole and zero of each one of 

the nA factors in (7) cancel out. 

Property 2:  Let hτ (t) be the inverse Laplace transform of 

Hτ(s). Then, hτ (t) is a function with compact support of length nA, 

as illustrated in Fig. 3. 

Proof: We introduce the following notations: 
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and the inverse Laplace transforms   hR (t) = L–1{ HR(s)} and 
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where u(t) is the unit step. The function rn(t) has the compact 

support [0,1], Then, hR (t) is the result of the repeated convolution 
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of nA functions with support [0,1] and so, according to a 

convolution theorem, it has the compact support [0, nA]. Finally, 

h0(t) and hτ (t) have also a compact support of length nA, since h0(t) 

is a linear combination of derivatives of hR(t), and hτ (t) = h0 (t–τ). 

Property 3: The Fourier transform of hτ (t) is Hτ (jω), which is 

simply obtained from (7) by replacing  s  with  jω. 

It follows that the fundamental difference between the direct 

interpolation (5) and the FIR-like interpolation (6) stems from the 

dual form of the Nyquist-Shannon sampling theorem [1], where ω 

is viewed as a “time variable” whereas t becomes a “frequency 

variable.” Thus, the above derivations show that the conditions of 

the sampling theorem are far from being satisfied by the method 

described in [2], where  hA(t) = L–1{HA(s)} extends over an 

excessively wide time segment, but are fully satisfied by the MP 

design since hτ (t) is strictly zero outside an interval of length nA. 

 

2.4 Identity of the EWD and MP Frequency Sampling Design 
 

Since (4’) has a unique solution, each sampled exponential from 

the set of linearly independent functions { ,
j tnw

e  n = ±1, …, ±M,  

w–n = –wn}  is exactly reconstructed by the EWD interpolator SC 

with the optional time shift τ. Then, for each x(t) = ,
j tnw

e  the 

exact sampled response of the filter HA(s) to xC(t) (see Fig. 1)  is 
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At the same time, the response of the MP digital filter to a discrete 

time sequence, 
nj w k

e  ,  is  
MP MP

[ ] ( )n nj jw w k
y k H e e=  where, 

according to (6), MP A
( ) ( ).

n

n nj jw w
H e e H j w

τ−= Thus, the last 

two expressions, together with (10), yield the yMP[k] = yEWD[k]. 

Finally,  HMP(z)  ≡  HEWD(z),  since  HMP(z) and  HEWD(z) have the 
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Fig. 4. Digitizing errors, |E(ω)|dB , for the lowpass analog filter 
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solid line). The frequency is normalized to π. 

 

same denominator, g(z–1), by design, and the (m+1) coefficients of 

the MP numerator, f(z–1), are uniquely determined by (6). 

 

3. EQUIRIPPLE OPTIMIZATION OF EWD FILTERS 

 

3.1. Computation of the Digitizing Error 
 

The optimization is done with a fast algorithm based on the MP 

interpolation equations (6) and consists in finding the (m+1) real 

coefficients of f (z
–1) that minimize the Chebyshev norm, 
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of the digitizing error, 
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where  ωmax is predetermined, g (z
–1)  is given by (3), and τ  is to be 

obtained in the final stage of the optimization in Section 3.3 below. 

Fig. 4 shows typical plots of |E(ω)|dB = 20 log10 |E(ω)|, 

corresponding to τ = 0, m = 11, and ωmax = 0.7 π. First, a near-

optimal EWD filter is obtained by computing the frequency nodes 

that yield an equiripple magnitude |E(ω)|dB within the passband 

and transition bands of the analog prototype HA(s), like that one 

exemplified in Fig. 4 with solid line. In general, the error of the 

best Chebyshev norm approximation discussed in Section 3.3 does 

not need to cancel, as shown in Fig. 4 by the thick solid line. 
The symmetry properties of the transfer functions and E(ω) 

allow for the derivations below to be done only for the M  positive 

nodes, whereas the actual nodes are wn, n = ±1, …, ±M,  w–n = –wn. 

Similarly to the Remez exchange algorithm [7], instead of trying to 

reduce the error at each iteration, Algorithm 3 in Section 3.2 will 

adjust the reference {wn | n = 1, …, M } such that it converges to a 

point set {wn
*} that yields an equiripple  |E(ω)|dB   on  ω є [0,ωmax].   

To this end, the interpolation of  Hτ (jω) defined by (6) and (7) 

is done with the Lagrange formula, thus calculating E(ω) directly, 

without the coefficients of the complex polynomial f(z–1): 
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are equivalent. Then, since  m  is odd, the interpolation function 
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can be expressed in terms of a linear combination of the linearly 

independent trigonometric functions {cos(n-0.5)ω, sin(n-0.5)ω, 

n=1, …, M} with period 4π. The trigonometric form of (13), 
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can be expressed in terms of the M positive frequency nodes alone. 

First, by using the symmetry properties of Hτ(jω) and grouping 

some terms, the following trigonometric polynomials are defined: 
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Then,  f (e–jω) becomes 
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Finally, the expression (16) replaces f (e–jω) in (12) to yield E(ω) 

for given sets of frequencies, ω є [0, ωmax], and frequency nodes, 

{wn | n=1,…,M }, grouped in the vectors ω and w, respectively. In 

this form, the numerical processing of E(ω) can be efficiently done 

with vector and matrix invariants, as shown in the next section. 

 

3.2. Computation of the Equiripple Digitizing Error 
 

The smoothness of the function Hτ(jω), together with the properties 

discussed in Section 2.3, suggests a smooth magnitude |E(ω)|dB as 

well. In fact, |E(ω)|dB is characterized by (M+1) lobes on the 

imposed interval ω є [0,ωmax]. 

The equiripple magnitude |E(ω)|dB is obtained with the iterative 

Algorithm 3, which calls Algorithms 1 and 2. With m and ωmax 

fixed, Algorithm 3 is called repeatedly for each new value of the 

time shift τ, according to the optimization process presented in 

Section 3.3 below. The algorithms are described in pseudo-code. 

Algorithm 1.  Determine: Eℓ ― the maxima of |E(ω)|dB , vℓ ― the 

abscissa of Eℓ , and the lengths  ∆ℓ , ℓ = 0,1,…,M, of the error lobes 

on the segments [0,w1 ], {[wℓ ,wℓ+1 ], ℓ = 1,…,M–1}, and [wM, ωmax] 

• compute: 

 E0  =  max{Edb(ω)}  on  ω є [0, w1 ],     v0,     ∆0 = w1 

• FOR  ℓ = 1,…,M–1, compute: 

   Eℓ = max{Edb(ω)} on ω є [wℓ+1,wℓ],   vℓ,   ∆ℓ = wℓ+1 – wℓ 

END FOR 

• compute: 

EM  = max{Edb(ω)} on ω є [wM, ωmax],  vM,,   ∆M  = ωmax – wM 

Einf  = min{E0 , … , EM },           Esup = max{E0 , … , EM } 
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Moreover, a detailed analysis of the expression |E(ω)|dB 

calculated in terms of (15) and (16) justifies the following: 

Proposition: The maximum value Eℓ of any given lobe of 

|E(ω)|dB decreases when the length ∆ℓ = wℓ+1 – wℓ decreases and, 

conversely,  Eℓ  increases when ∆ℓ increases. 

Indeed, this property, which is obvious on the factors  Pℓ (ω) 

defined by (15), propagates throughout the terms of (16). 

The iterative search for an equiripple |E(ω)|dB is done below by 

adjusting the lengths ∆ℓ according to the above Proposition. The 

numerical examples illustrated in Figs. 4-6 are done with nA = 7,  

m = 11, a vector ω  of length  L = 256,  and a vector w of length M 

= (m+1)/2 = 6. In the algorithms below, the element–by–element 

multiplication and division of vectors are represented by ○ and  ○/,  
respectively. The vector multiplication is represented by *. 

Algorithm 2: Compute E(ω) and  |E(ω)|dB for a given time shift τ 

and vector w (use the vectors h, r, i, c, and g from Algorithm 3) 

• given the vector w, compute the following: 

fw = 2 ( ),
m

j

e H jτ
w

w�
     

rw = Re{ fw},      iw = Im{ fw}, 

and the matrix  P: L × M  defined by the vector c and (15) 

• compute E(ω): 

f  = r ○ {P * [ rw ○/ cos(0.5w)]} + j  i ○ {P * [ iw ○/ sin(0.5w)]} 

      E(ω) = f ○/ g  –  h ,       Edb(ω) = 20 log10 |E(ω)| 

Algorithm 3: Determine the vector w that provides an equiripple 

magnitude  |E(ω)|dB  on  0 < ω ≤ ωmax  for a given time shift τ 

• Initialization (done once and for all for) 

– build the vector ω with L frequency points equally spaced 

on 0 < ω ≤ ωmax < π   (usually, L ≤ 256) 

– compute the vectors  h,  r,  i,  c,  and  g: 

    h= A( ),
j

e H j
τ− ω

ω� r= 2 cos0.5 ,
m

j

e
− ω

ω�
 
i = 2 sin0.5 ,

m
j

e
− ω

ω�  

      c = cos ,ω     g = ( )j
g e

− ω
 

– build the vector w with M frequency nodes equally spaced 

on 0 < ω < ωmax < π 

– call Algorithm 2 to compute E(ω) 

– call Algorithm 1 to compute {E0 , … , EM },  Einf  and  Esup 

• δ = 1,     K = 0 

• WHILE   Esup  – Einf  >  0.5 dB   (threshold set by the designer) 

 δ = max{δ / 2, 2–20} 

 WHILE    K < 4 

– sort the set {E0 , … , EM } and divide it evenly into 

two sets: the set {Low} with the lowest maxima, 

and the set {High} with the highest maxima 

– IF the lobes in the two sets interchange from the 

previous run, THEN K=K+1, ELSE, K=0, END IF 

– IF M is even, THEN ∆=∆M /2, ELSE  ∆=0, END IF   

increase the lengths ∆ℓ
Low in the set {Low}, and 

decrease the lengths ∆ℓ
High  in the set {High}: 

∆ℓ
Low ← (1+ δ ) ∆ℓ

Low,       ∆ℓ
High ← (1– δ ) ∆ℓ

High 

– S = SUM { ∆ℓ
Low } + SUM { ∆ℓ

High } + ∆ 

    ∆ℓ
Low ← ωmax ∆ℓ

Low / S ,    ∆ℓ
High ← ωmax ∆ℓ

High / S 

    IF M is even, THEN ∆M /2← ωmax ∆M /2 /S, END IF 

– update the vector w for the new lengths ∆ℓ 

– call Algorithm 2 to compute E(ω) 

– call Algorithm 1 to get {E0 ,…, EM }, Einf  and Esup 

  END WHILE 

 END WHILE 

The (m+1) coefficients of  f (z–1) can now be determined from (6). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The Chebyshev norm ||E(ω)|| plotted as a function of the 

time shift τ for the EWD designs illustrated in Fig. 4  (τopt=0.365). 

 

Based on the properties stated in the Proposition above, an 

analysis of Algorithm 3 shows that the inner WHILE loop 

converges to a limit cycle for each new value of the parameter δ. 

When a limit cycle is reached, the lobes in the sets {Low} and 

{High} interchange at each new node adjustment done with the 

same δ. The inner loop is terminated when this interchange occurs 

three times. As δ is halved on each new run of the outer loop, the 

difference (Esup–Einf) corresponding to each new limit cycle 

decreases, and the algorithm ends when a threshold (e.g., 0.5 dB) is 

reached. The equiripple design illustrated in Fig. 4 took 124 

iterations in 0.17 seconds to complete on an Intel Pentium 

computer (3 GHz, 1 GB of RAM). 

In the next section we argue that, given HA(s), m, and ωmax , the 

equiripple minimization is optimum and unique for an optimal τ. 

 

3.3. The Optimization Algorithm 
 

The vector w that provides an equiripple magnitude |E(ω)| for a 

given time shift τ and frequency range 0 < ω ≤ ωmax < π is obtained 

with Algorithms 1– 3. As mentioned in Section 2.2, an optimal 

time shift, τopt, is needed due to the inherent time delay between the 

input and the output of the analog prototype. Thus, the 

interpolation can be substantially improved by repeatedly running 

the above algorithms for values of τ within the interval [0,1] and 

plotting ||E(ω)|| as a function of τ, as illustrated in Fig. 5. 

Typically, this plot is very smooth and has a single minimum in the 

interval [0,1]. Accordingly, a divide–and–conquer procedure can 

be applied by running the above algorithms for, say, 16 values of  τ 

(0 ≤ τ < 1), and then, if necessary, repeating the procedure with 

smaller increments of τ around the previous minimum. 

It is worth noting that the focus on the EWD filters restricts the 

approximation to an MP interpolation problem which, in general, is 

not the same as the problem of the best possible Chebyshev 

approximation in the complex plane [8]. While the Remez 

Alternation Theorem [7] implies that the best Chebyshev 

approximation in the space of real functions is the same as the best 

interpolation that minimizes the Chebyshev norm (11), this is not 

generally true of the space of complex functions. Yet, the 

analyticity properties of the EWD problem lead to a simple 

algorithm for the Chebyshev optimization [–ωmax,ωmax]. The only 

purpose of this algorithm is to let the designer test the following 

two conjectures. 

 Conjecture 1: For τ  ≠ τopt, the equiripple EWD error differs 

only slightly from the Chebyshev error, as illustrated in Fig. 4.  

Conjecture 2: If the equiripple optimization is done with the 

optimal time shift, τopt, then HEWD(ejω) coincides with the best 

Chebyshev approximation of  
optj

e
τ ω−

HA(jω),  as shown in Fig. 6. 
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Fig.6. Digitizing errors, |E(ω)|dB , for the analog filter defined by 

HA(s) in Fig. 4: equiripple EWD design with τ = 0  (top dotted 

line), optimal equiripple EWD for τopt = 0.365 (solid line), and best 

Chebyshev norm approximation for τopt = 0.365 (thick dashed line);  

actually, the latter two plots coincide. 

 

The best Chebyshev approximation defined in Section 3.1 in 

terms of (11) and (12) is now given a specific formulation based on 

the fact that g (z–1) is fixed and expressed by (3). Moreover, g(e
–jω

) 

does not cancel for any real value of ω since the system (1) is 

assumed to be stable. Now, let φk(ω) = e
– j k ω

/g(e
– j ω

), k = 0,…,m, 

be the basis functions of the complex space Φ of functions 

 ( )D

0

( ) ( )
m

j
k k

k

H e f
ωϕ ω ϕ ω

=

= ∑�  (17) 

that approximate  H(jω) = e
–jτω HA(jω). The necessary conditions 

of [8, Sect. 3.2] set for the coefficients {fk |k = 0, …, m} of the 

unique polynomial  f (z–1)  that minimizes the Chebyshev norm 

(11) of the error (12) are met for ω є [–ωmax, ωmax]:  (i) the space Φ 

satisfies the Haar condition [8] since it possesses the property that 

every function in Φ which is not identically zero vanishes at no 

more than m points,  (ii) the maxima of the equiripple |E(ω)| have 

the same value at  r  points, and  (iii)  m+2 ≤  r ≤ 2m+3. 

Considering the 2M zeros of |E(ω)|, it can be shown that, in 

general, r = m+2 with one maximum at  ω = 0, whereas  r = m + 3 

occurs only when  τ  is in a narrow neighborhood of τopt . This 

always amounts to (M+1) maxima within the interval ω є [0, ωmax], 

as seen in Figs. 4 and 6 (computed with  m = 11 and  M = 6). 

The Lawson algorithm for the best Chebyshev norm 

approximation [9], outlined in Algorithm 4 below, can be used to 

test the above conjectures. Typical plots are given in Figs. 4 and 6. 

Algorithm 4.  Iterative reweighted least squares error computation. 

• Initialization (done once and for all) 

– build the vector  ω   with  L  frequency points, ωi ,  equally 

spaced on  –ωmax ≤ ω ≤  ωmax   (usually,  L = 512) 

– initialize the weight vector:  η = [1, … , 1] of length  L 

• FOR  ℓ = 1,…, L0  (usually L0 < 50) 

– Compute the filter coefficients {fk |k = 0, …, m} as the LS 

solution of the overdetermined system of equations 

 
A

0

( ) ( ) , 1,..., ,i i

j i
m

i ik k
k

f e H j i L
τ ω

η ϕ ω η ω
−

=

= =∑  

– compute |E(ωi)|, i = 1, …, L, where E(ω) is defined by (12) 

– update the weight vector η with Lawson’s formula: 

    

0

2 1

| ( ) |
, 1,..., .

| ( ) |

i i
i L

i i
i

E
i L

E

η ω
η

η ω
+

=

=←

∑
 

      END FOR 

It is worth noting that, although the Lawson algorithm is 

known to converge very slowly, the analyticity properties of the 

present approximation problem make the error E(ω) become 

practically steady after just a few iteration steps. Finally, since it is 

proven that, under the above conditions (i)–(iii), the Lawson 

algorithm converges to the unique best Chebyshev norm 

approximation [9], the above test done with Algorithm 4 also 

supports the assertion that the method proposed in this paper yields 

the unique optimal IIR filter for the parameters m, ωmax, and τopt . 

 

4. CONCLUSIONS 

 

The paper has developed an original algorithm for the optimal 

digitizing of analog filters with equiripple error, and proposed a 

drastic reduction of the digitizing error by choosing 
s

e
τ−

HA(s) as 

target of the optimization, rather than HA(s). This modification of 

the analog transfer function amounts only to a slight increase of the 

inherent group delay of  HA(s) by τ  (τ < 1). 

The proposed  method is meant to be used only for the design 

of the optimal digital filter. Then, the EWD algorithm [6] would 

provide the equations for intersample output, as well as VFD 

implementations when necessary. At the same time, the optimal τ 

can be also used by the WLS digitizing of analog filters, according 

to the previously proven equivalence between the EWD and WLS 

designs [4]. In addition, Figs. 4 and 6 suggest that the existing 

methods that determine the best Chebyshev approximation in the 

space of complex functions benefit of the time shift optimization as 

well. Yet, all these methods, including the WLS design, require 

computationally expensive iterative procedures that may or may 

not converge, and so they are not suitable for the optimization of 

the time shift τ presented in Section 3.3 above. By contrast, the 

proposed optimization is completely automated: it needs only the 

initial parameters, m and ωmax , which are kept unchanged for each 

new time shift trial:  m is chosen one to five units greater than nA, 

while the interval [0,ωmax] must cover the passband and transition 

bands of the analog filter. 
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