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ABSTRACT 

A new look at the problem of digitizing analog filters is taken in 
the light of the proof of the equivalence between weighted least 
squares (WLS) frequency-domain methods and a previously 
proposed interpolation-based method referred to as the extended 
window design (EWD). This equivalence is used to prove new 
properties of the EWD and WLS methods, First, the EWD filters 
are shown to be near-optimal due to their equivalence to the WLS 
filters. Next, improved WLS filter designs are obtained, justified 
by typical properties of the interpolation method that generates the 
EWD filters. Thus, the digitizing error can be dramatically reduced 
by adding a one- or two-step delay and slightly increasing the 
number of the numerator coefficients relative to the denominator. 
Finally, a choice of suitable implementations of fractional delay 
filters is available for the various cases of fixed or variable delays. 

1. INTRODUCTION 

The extended window design (EWD) filters, proposed and 
analyzed in [ I ] ,  are IIR digital equivalents of given analog 
prorolypes. The nature of their equations which approximate the 
output signals of analog filters leads to an efficient solution to the 
problem of implementing fractional delays (FD) by digital means 
[21 encountered, for example, in sampling rate conversion. 

While the efficiency of the EWD approach to FD implementa- 
tions bas been already demonstrated in [Z ] ,  the main result of the 
present paper is the proof that the EWD method is near-optimal 
and equivalent to the traditional weighted least squares (WLS) IIR 
filter design with frequency sampling [ 3 ] .  The proof is based on 
two features of the particular problem considered in this paper. 
First, it is assumed that the fractional delay is to be applied to the 
output of a filter that can be designed in analog form. In contrast 
to the filter design performed directly in the digital domain, the 
digirizing of an analog prororype lends itself to a simple and 
accurate FD realization. Thus, all the derivations below deal with 
the problem of approximating the transfer function H(s) of an 
analog filter by a discrete-time transfer function HE,&). Second, 
since both H(s) and HEW&) are analytical rational functions, the 
properties of such functions dramatically simplify the present 
problem relatively to the conventional WLS filter design which is 
meant to approximate an arbitrary frequency response, In fact, the 
simplest EWD filter design will be shown to yield exactly the same 
IIR filter as a modified WLS filter design. 

Finally, the above equivalence will be used to derive new 
properties of both classes of digital filters. First, the EWD filters 
are characterized by the fact that their digitizing error can be 
reduced by slightly increasing the order of the filter while all the 
additional poles are placed at z=O. An even more dramatic error 
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reduction is obtained by adding a one- or two-step delay to the 
designed digital filter. This result leads to improved WLS and 
iterative WLS filter designs, with or without additional delays. 
Conversely, the EWD filters are shown to be near-optimal due to 
the equivalence between the EWD and WLS methods. The 
importance ofthese results is twofold the proposed simplified and 
enhanced WLS designofconventionaldigitalfiltersis simplerthan 
the EWD, yet the EWD can be viewed as a better alternative to 
previous designs of fractional delay filters [4], [ 5 ] .  

The paper is organized as follows. Section 2 briefly presents 
two forms of the EWD filter equations. The first one is a set of 
equations derived through linear algebra and numerical methods 
which demonstrates the efficiency of the EWD filters in imple- 
menting fractional delays. The second one is a closed form 
expression of the EWD transfer function which will be used in 
Section 3 to prove the equivalence between EWD and WLS filters. 
Next, Section 3 introduces a modified frequency-domain IIR filter 
design method, referred to as the matched-pole (MP) frequency 
sampling design, and gives the proof of the identity of the MP and 
EWD digital filters. The paper concludes with Section 4. 

2. A FEW REPRESENTATIONS OF THE EWD FILTERS 

The EWD filters are defined in [ I ]  as digital equivalents of an 
analog prororype with the transfer function 

where N(s)  and O(s) are known polynomials of orders m, and nA. 
respectively. Without loss of generality, the time is assumed to be 
normalized to the sampling period of the input signal, and so the 
folding frequency will be w, = n. 

TheEWD filters are the result ofajoinr time-frequencymerhod 
which is based on the interpolation of the input signal ~ ( r )  at the 
sampling times r=k, as shown in Fig. 1 below. In addition to 
targeting the time domain [k-m,k],  the EWD interpolation targets 
a frequency domain o E [o, U,] i [OJ] by expressing the input 
signal in terms of the trigonometric polynomial 

M 

x ( t ) = x  (a,,cos a,; + pnsin oJ). k - m  i t s  k .  (2 )  
* _ A  .. - " 

where o, . . . , o, are distinctfrequency knors of the interpolation 
problem. The frequency knots are usually chosen to be equally 
spaced within the frequency range [oo,w,] that contains most of 
the spectral energy of H(jw). Also, in the basic EWD method, M 
and m are chosen such that the coefficients a;, and 0. are obtained 
as the exact solution of the algebraic equations 

where x(tJ are the values of the input signal at the sampling times 
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r&m ,.... k. Next, a decision is to be made about an option that 
was shown in [ 2 ]  to increase the accuracy of the digitizing 
procedure. Specifically, an integer delay d may be chosen such 
that the digital filteroutputy,(k), calculatedat the current time r=k, 
actually represents the analog output corresponding to the time 
instant r=k-d. The EWD recursivegeneration ofthe current output 
y(k-d) in Fig. 1 is based on the responsey(r), k-d-n,srik-d, of the 
analog prototype H ( s )  to the interpolated signal x(r) built from the 
last (m+l) input samples up to the time r=k. Obviously, any 
positive integer d produces a digital filter whose implementation 
implies an output delay d. Moreover, y(r )  is determined along the 
time segment, k-d-n,iri k-d, while the initial conditions are the last 
n, output samples, y(k-d-n,), . . . , y(k-d-1). Thus, this design, 
referred to as the exfended window design (EWD) provides a 
natural match for the initial conditions of the analog and digital 
filters and incorporates the interpolation step into the s- to z- 
domain mapping step. The "current sets" of input and output 
samples used as a u i l i a v  condirionsduring the computation of the 
analog filter response are grouped into the vectors x,, and yaw: 

2.1 The Fractional Delay Form of the E W D  Filter Equations 

In order to evidence the FD features of the EWD method, this 
section briefly presents the original design of the EWD filters 
which used the Chebyshev series representation of signals in terms 
of vectors of Chebyshev series coefficients [ 11. For convenience, 
the mapping of square integrable functions into the space of square 
summable vectors defined over the field of real numbers was 
referred to as the A-transformation. Basically. the A-transform y of 
a signal y(r),  r E [T,, T J ,  is the vector y=Ay(r). whose components 
are the coefficients of the Chebyshev series expansion ofy(r). The 
inverse A-transform is defined by 

where c,,( r)=cos(narc cos r) are the Chebyshev polynomials ofthe 
first kind, and r i s  a normalized time variable. It is worth noting 
that, for any given rand length Ny of y, only N, multiplicarions are 
required. Indeed, the Clenshaw algorithm (see, e.g., P2 in P I ) ,  
which is used to compute (3, does not need the explicit computa- 
tion of the values c.( r). Assume now that y is the A-transform of 
the output signal y(r )  of an analog filter, defined in Fig. 1 on the 
interval k-d-n,irsk-d, correspondingto - I  i rs 1. Then, this vector, 
restricted to the first N, coefficients may be used to generate the 
vector yo of the interpolated output, 

( 6 )  
calculated at any given times to= (r,Jj=,,,,..,,contained in interval 
[k-d-n,,k-dl. The i'h row of the matrix P, is [OS, c, (q), c2( r.1,  ... 1 
calculated with (3, where T,=k-d-n,, T,=k-d, 7 corresponds to r,, 
and -1sqsI .  

Now, ( 2 )  is used to compute the A-transform x of x(r) on the 
subinterval k-d-n,irsk-d of k-msrskin terms of the vector x,, 
defined in (4). The result is the following matrix relation 

Y,) = Po Y I Po: No x .v, , 

x = C ( m , n , , d ) x _ ,  (7)  

which defines the A-rransform interpolation operator C(m,n,,,d). 

fictioml Jdw iniemd 

Fig. 1. Interpolation intervals form=9, n,=4. andd=3. Definitions 
of some normalized variables: r = the time normalized to the 
sampling period; r= the A-transform time variable of the filter 
design interval [k-d-n,,k~d]; 9 =the A-transform variable ofthe 
fractional delay interpolation interval [k-d-l,k-d]. 

As the A-transform reduces the computation of the response of 
the analog filter H(s) to a linear algebra problem, a first general 
expression for the A-transform y=Ay(r) is obtained, 

(8) y =  - G y m  + Fx-. 

The parameters G and F in (8) are calculated once and for all for 
any given transfer functionH(s). n e n ,  the inverse A-transform(5) 
is to be applied to both sides of (8) in order to yield y(r) at any 
desired time instant k-d-n,irsk-d. In particular, the choice r=k-d 
provides the conventional digital filter difference equation 

Yk.d = -g=Y- tiT&. (9) 
Likewise, any fixed fractional delay like fd in Fig. I yields a pair 
[ g,f) of vectors which can be pre-computed and saved. A different 
problem a&es when fd is variable and must be determined in real 
time, during each sampling interval. An efficient solution, which 
avoids the recalculation of g and f from G and F, is available 
based on the time-window conrracrion matrix S (see, e.g., [2]) 
which relates the A-transforms y and yc, respectively defined on 
the intervals -1 i ri 1 and - 1  6 9s I in Fig. 1: yc = S y. Now, the 
solution (8). together with the matrices C, = S C and C, = S F, is 
calculated once and for all, under the assumption that the ourput 
inrerval is placed as in Fig. 1, and only the fractional pan of the 
delay is variable. This means that d will also be fixed and equal to 
the minimum possible value of the integer pan of the delay, 
whereas any additional integer corresponding to the current delay 
will be introduced during the digital implementation of the filter. 

Properry PI: EfSlciency of the FD Compurarion. It can be shown 
[21 that, due to the small length ofthe ourput interval relatively to 
the length of the overaIIA-transform interval, only very few terms 
of the matrices C, and C, are needed. Also, usually, the matrix C, 
can be ignored altogether if d=O, as the latest input samples have 
little effect on the current output interval [k - l , k ] .  Thus, the current 
A-transform yc requires only a few operations and is given by 

Y c =  -CyY- + C x x m  > (IO) 
where the vector yaux is updated with the original equation (9). 
Finally, for each new value to=k-fd of the interpolation time, the 
inverse A-transform ( 5 )  applied to yc yields the interpolated 
output value yo with one multiplication for each component ofy,. 
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Properly P2: Digitizing Error Reduction when d >  1 ,  andm>n,+d. 
The well-known fact that the interpolation at equally spaced points 
is more accurate toward the center of the interpolation interval [6] 
can be used to advantage when the fractional delay interval fd has 
an integer part d i  1. Thus, according to Fig. 1, the last d sampling 
periods prior to the current input sample can be left out of the 
overall A-transform interval used in the computation of y. This 
means that the A-transforms x and y will be calculated only for the 
overnil A-rransfurm inrenal k-d-n,irsk-d in Fig. I .  Moreover, a 
slight increase of m beyond n,+d improves the accuracy of the 
approximation ofy(r) as most of the input signal energy used to 
calculate its A-transform y will be provided by the accurate central 
segment of the approximation of x(t) on the interval [k-d-n,,k-dl. 

2.2 The EWD Transfer Function 

The transfer function Hrwo(z) below, corresponding to the 
EWD difference equation (9). was derived in [7] for any integer d 
that satisfies the condition 0 i d i m-nA. This expression will be 
used in Section 3 to prove the equivalence between the EWD and 
WLS filters. 

Letx(1) be the trigonometric polynomial (2) whose coefficients 
a,, and ,l?. are obtained by solving (3) for the particular right-hand 
side values x(r,) all equal to zero with the exception of the last 
sample which is one. Also let the origin of the time axis r be placed 
at r=k-d-n,. Then the Laplace transform X(s)  of x(r), and the z- 
transform X,(z) of the sampled sequence x,(k) are given by 

The following recursive equations determine the coefficients ci: 

Q,(z) n z m * l + d l z m +  ... +dm+,, c l =  -Po, 

With (15) the na leading terms of the numerator of HE&) are 
canceled to satisfy the standard condirion of initial resr defined in  
terms of the auxiliary conditions (4). The final HEwD(z) is precisely 
the transfer function corresponding to (9). The algebraic analysis 
of (14) yields Property P3 below. 

Proper,y P3: The real-time implementation of the EWD transfer 
function is of order n, = m 2 n,+d, with the nA poles z, related to 
the poles s. of the analog prototype by the expression z, = e '" , 
while the remaining poles, if any, are pbdced at z=O. 

3. EQUIVALENCE BETWEEN EWD AND WLS FILTERS 

Consistently with the approach taken in this paper, the 
frequency domain IIR filter design problem is restricted to the 
problem of approximating the transfer function ( 1 )  of an analog 
filter of order n,, by a discrete-time transfer function 

where min, .  Since both H(s) and H,,(z) are analytical rational 
functions, the properties of analytic functions imply some rather 
powerful constraints on their behavior within their respective 
regions of convereence. Moreover. these constraints also restrict 

M M 3.1 The Matched-Pole Frequency Sampling Design 

n=o n=0 
fis)=II(s'+ w i ) ,  QD(z)=n(Z2-zZcosy+l ) .  (12) 

One more consequence of the constraints on the frequency 

This yields the design equations 
responses H G o )  and ,k,(e'y relates the poles of H(s) and H&) 
throueh the relationshio z = e I" . mentioned in  Prooertv P3 

~ . I  1 "  

above. This is equivalent to the time domain condition that the 
modes z,X of the digital filter are exactly the same as the sampled 
sequences of the modes e ' " I  ofthe analog prototype. Moreover, 
in theory, the analyticity properties imply that How) and Ho(dy  
can be completely defined by their values on finite intervals of the 
real frequency w Yet, the numerical design below is based on the 
pole-matching condition, and aims at matching the two frequency 
responses within a frequency range [om U,] that contains most of 
the spectral energy of HGo). Based on the above considerations, 
a modified version of the conventional IIR frequency sampling 
design [31 is now proposed. The set of algebraic equations 

Z{X(s)H(s)) = z[ R(s,mJ)H(s) 1 
Q (8)  

(13) 

- 

1 b,s""+"-' +... + b,,+,-, 
B .( 

Q(s) (s "' +a ,  snA-' + . _. + an" ) 

. (Po Z n " * m +  ...+p""*,) 
Q,(z) ( z""+ g,z""-' + _. . + g., ) ' 

N,(dU") = e -jdu" D,(e"") How.), n = 0, ..., M, (17) and the final causal transfer function 
I I 

Q (z)  z ( ~ o ~ n " ' " m + . . . + P n A . , )  is solved for the (m+ I )  coefticients p. defined in (16), while O,(z) 
is chosen with the same coefficients g,, k=l, ..., n,,, as those found 
in the vector g in (9) and the denominator ofH,,(z) in (14). Here, 

HE#&) = 
z " ' * ' - ~ ~  Q D ( z ) ( z " * + g l r " * ~ l +  ...+g"") 

~ ~~ 

M and the frequency knots 0,. , . , o, are chosen in the same way 
as in (2), that is such that (17) has a unique solution. The optional 
delay d>O makes the output y,(k), calculated at the current time 
f=k, actually represent the analog output at the time instant r=k-d. 

+ (14) 
2 4  + g, z""-' + ,, , + g., 
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Fig. 2 Normalized responses HGo) (solid line), and H,,(e'Y 
(dashed line) for H(s) = (a '+I ) ( s '*s )  

(s' +O.ls * 2 ) ( ?  +0.3s *2)(s* i 0 . Z ~  t 3) 

Since the IIR filter design is now reduced to an FIR frequency- 
sampling problem [3], this method will be referred to in the 
following as the matched-pole (MP) frequency sampling design. 

3.2 Identity of the EWD a n d  MP Frequency Sampling Design 
To prove that the EWD equation (9), as well as (l3)-(15), 

yields exactly the same transfer function (16) as the MP frequency 
sampling design it suffices to show that they produce the same 
numerator N&). First of all, the EWD computes the numerator 
coefficients such that the digital filter response coincides with the 
(possibly delayed) sampled response of the analog filter to the 
interpolated input. Moreover, as (3) has a unique solution, inputs 
like xJr) =e""' , w.=o, ..., U,, are exactly interpolated (with 
an optional d-step delay, d > 0 Therefore, the exact response of 
H(s)  is y,(t) = H(jo,)e Jrcr-d' , whiletheEWDoutputisgiven 
by the relation yn(k) = HGoJ eJu"(k-d' = H,,(e'") 
and so the EWD filter satisfies the expression 

H KWD (e@") = e-Jdo" Hfio,,), n = 0 , .  . . , M .  (18) 
Finally, since the MP design determines the numerator coefficients 
pa  as the exact solution of (17), the comparison of (17) and (18) 
leads to the conclusion that HE&) = H,(z), which proves the 
identity of the MP frequency sampling filters and the EWD filters 
for integer values of the delay d>O. 

Now, it is worth noting the close relationship between the 
EWD and MP filter design methods and the traditional WLS 
design [3]. The latter minimizes the expression 

wherep,and g,are the unknown coefficients of the numerator and 
denominator ofH,(z), on are the frequency knots within [O,r], and 
w ( o )  is a user defined weighting function. As the IIR filter design 
considered in this paper deals with the problem of approximating 
the transfer function of an analog filter by a discrete-time transfer 
function, the analyticity properties discussed above state that the 
denominator of H,(z) is uniquely computed through the mapping 
defined in Property P3. Indeed, extensive tests done on the EWD, 
MP. and WLS designs support this assertion, in the sense that all 
the denominators are practically the same, even when a large 
number M is chosen in (19). In this last case, the WLS design may 
lead to slightly different numerators, while the values of the 
digitizing error Eo(@ = 20 loglo(le'""H(io)-Ho(e'Y1) remain about 
the same as those obtained with the EWD and MP methods. This 
is illustrated in Figs. 2 and 3. Actually, depending on the weighting 
function w ( o ) ,  the shape of the error E D ( o )  provided by the WLS 

Fig. 3. The digitizing error E,(@) of four digital filters equivalent 
to the transfer function H(s) shown in Fig.2 (n,=6, m=7, and d=O). 

design may vary all the way from the dashed line in Fig. 3 ,  where 
w(@) = I ,  to the shape of the EWD error, shown by the solid line. 
Also, Fig. 2 evidences the four frequency knots on (chosen within 
the narrow frequency range [37,63] % U,) which define H,(z) 
under the pole-matching condition and consistently with the 
analysis based on the analyticityproperties. Moreover, i fd=l ,  then 
theEWD,MP,andWLS digitizingerrorsdecreasehyabout20dB. 

4. CONCLUSIONS 
The proofthat theEWD and WLS filters areequivalent implies 

that the EWD filters are near-optimal, and so they are not only 
efficient tools for FD applications, but also very accurate in 
reproducing the characteristics of the original filters (designed in 
analog form) whose delays are to be controlled. Next, according to 
Property P2, the digitizing errors can he reduced by adding a small 
delay, or by increasing the filter order while the additional poles 
are placed at z=O. Usually, such delays are negligible with respect 
to the inherent group delay of the  original filters. At the same time, 
it ensues that the frequency sampling methods can be improved in 
exactly the same way, due to their equivalence to the EWD 
metbod. Moreover, a choice of suitable FD filter implementations 
is available for various applications. Thus, fixed fractional delays, 
can he realized with either the EWD or frequency sampling 
methods improved through the pole-matching condition. Finally, 
variable delays required. for example, in sampling rate conversion 
can he efficiently realized with the EWD equations (9 )  and (10). 
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