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ABSTRACT

This paper proposes a conceptual modification of the interpolator
used by the extended window design (EWD) of IIR and fractional
delay filters. The original EWD digitizes analog filters by perform-
ing a trigonometric polynomial interpolation along an extended
window that ends at the current sampling time. The proposed
changes increase the flexibility and the degrees of freedom of the
interpolator in two ways. First, the interpolation space is expanded
from the space spanned by a restricted set of sinusoidal functions
to the space spanned by any set of linearly independent functions.
Second, the Hermite interpolation (which processes the values of
both the signal and some of its derivatives at sampling times) is
considered in order to smoothen the interpolated signal. Since the
input derivatives are not available, related parameters are estimated
and updated recursively. The increased accuracy of the proposed
recursive EWD relatively to nonrecursive EWD and WLS optimal
filter designs is illustrated with an example.

1.  INTRODUCTION

A versatile method for the design of discrete-time equivalents
of analog systems, termed extended window design (EWD), was
mainly developed for fractional delay (FD) applications [1],[2].
The rationale for the digital filter design based on analog proto-
types is twofold. First, since both the analog and digital transfer
functions are analytical rational functions, the properties of such
functions dramatically simplify the design problem relatively to the
conventional iterative weighted least squares (WLS) IIR filter
design which is meant to approximate arbitrary frequency re-
sponses. Unlike the WLS approach, the EWD provides a straight-
forward design with no need for iterations or trial-and-error
adjustments of weighting functions. Second, in contrast to the filter
design performed directly in the digital domain, the nature of the
digitizing equations which approximate the output signals of
analog filters leads to an efficient solution to the problem of
implementing fractional delays by digital means [2] encountered,
for example, in sampling rate conversion. Basically, the traditional
two-point linear interpolation method for digitizing analog filters
[3]-[5] – that yields the so-called triangle-hold equivalents – was
modified in [1] in order to use (m+1)-point interpolators (m 2).
The digitizing errors produced by such fixed-length interpolators
are due to the end segments which contain most of the error energy
[6], and can be reduced by adding a small delay, or by increasing
the filter order while the additional poles are placed at z=0. Indeed,
these are two options where the approximation of the analog filter
response is done by ignoring one or both end segments of the
interpolated input. Thus, in contrast to the traditional digitizing
methods [3]-[5] that use only the single time period that ends at the

“current” sampling time, the EWD interpolation window is
extended even beyond the time segment that is actually used to
compute the response of the analog filter. Nevertheless, the error
of the working middle segment of the interpolated input may still
contain relatively large oscillations.

The method proposed in this paper is more general than the
previously developed EWD in two ways. First, the interpolation
space is expanded from the space spanned by a set of sinusoidal
functions to the space spanned by any set of linearly independent
functions. In particular, the latter may be the modes of the analog
prototype. But the most distinctive feature is the smoothening of
the left end of the interpolated segment whose impact on the output
usually outweighs the effect of the most current values of the input.
To this end, a modified Hermite interpolation [6] is considered in
a form that requires the interpolated segment to satisfy a few
additional conditions. Such conditions may be values of the
derivatives at some sampling times[6], or signal values in-between
the sampling times. Since these values are not actually available,
related parameters are estimated and updated recursively.

The paper is organized as follows. Section 2 defines the new
fixed-length interpolators in terms of the so-called characteristic
functions that will be used later for design. Section 3 derives the
closed form expression of the IIR transfer functions produced with
the recursive extended window design (R-EWD). It is worth noting
that this design is presented with reference to the original EWD for
two reasons. First, this allows for a clear comparison between the
two methods. Second, due to space limitations, only the theoretical
derivation based on the partial fraction expansion will be presented
in this paper. Yet, it will be possible to relate the above mentioned
derivation to the numerically stable EWD algorithm presented in
[1] in terms of linear algebra relationships and, finally, providing
the option of FD implementations [2],[7]. Finally, the increased
accuracy of the R-EWD relatively to EWD and WLS optimal filter
designs is illustrated with an example in the concluding Section 4.

2.  THE  EWD  AND  R-EWD  INTERPOLATORS

The R-EWD filters are designed below as digital equivalents
of analog prototypes defined by transfer functions of the form

where N(s) and D(s) are known polynomials of orders mA and nA,
respectively. Without loss of generality, the time is normalized to
the sampling period, and so the folding frequency will be  f  = .
In the following, the signals x(t) and y(t) are the input and output
of the analog filter H(s), while the input and output of the designed
digital filter HD(z) are denoted by xD(k) and yD(k), respectively. The
order of the digital filter is denoted by nD.
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Fig. 1. Definition of the EWD methods for an analog prototype of
order nA=4 and delay d=3:  the original EWD method takes m0=0
and mf=m=9;  the R-EWD is done with mf=nA+d=7 and a shorter
“current input interpolation interval,”  k-d-nA t  k (the m0

parameters are not evidenced in this figure). For each k, only the
output values at t=k-d and t=k-fd are computed.

In this section, the fixed-length recursive and nonrecursive
interpolators are first defined as standalone devices. The stand-
alone interpolator is a sampled-data system with discrete-time
input and continuous-time output. Specifically, the continu-
ous-time output signal xC(t) is built sequentially, one sampling
period at a time, from the input signal xD(k). Let  be the interpola-
tion space spanned by a given set of (m+1) linearly independent
functions collected in the vector (t) = [ 1(t), 2(t),..., m+1(t)].
Also, for each sampling time k, let xk(t) be the unique function that
passes through (mf+1) input samples (mf m) placed at  t = k-mf ,
k-mf +1, ..., k and, at the same time, satisfies  m0  additional
conditions, where m0 = m-mf 0. Since, in general, the last few
sampling periods of the interval  k-mf t k exhibit relatively
large extraneous oscillations [6], there are applications where it is
advantageous to select the segment k-d-1 t k-d of  xk(t) as the
“current” output segment, where  d is an integer (d < mf /2). The
conventional (nonrecursive) interpolation is obtained when m0= 0,
whereas   m0  1 offers a few interpolation options, depending on
the particular  m0 additional conditions.

According to the theory of sampled-data systems [4], the above
interpolator is uniquely defined by the input-output equation

that relates its transfer function HI (s) to the transforms XD(z) and
XC(s). In order to determine HI (s), as well as the corresponding
frequency response HI(j ), an input signal xD(k) should be chosen
followed by the sequential computation of xC (t). Finally,  the
transforms XD(z) and XC(s) should be computed to get

First of all, Eq. (3) requires a careful match of the signals xD(k) and
xC(t) in conjunction with the above sequential construction that
defines the standalone interpolator. Second, the expression XD(z)
is usually easy to obtain whereas, depending on the basis of the
interpolation space , the closed-form expressions of HI (s) and
HI (j ) may be hard to derive, in spite of the fact that their final
form will be shown to be relatively simple. The following two
methods stand out from a practical point of view.

The impulse response method. Perform the sequential construc-
tion of the response hI (t) to an input impulse (k), then compute
the Laplace and Fourier transforms of hI(t).While the derivation of
the closed-form expressions of HI (s) and HI (j ) is difficult, the
numeric computation of HI (j ) is expedited by using the FFT.
The characteristic function method. Define the characteristic
function associated with the interpolator as the signal x(t) in  that
satisfies  m0 additional conditions and interpolates the (mf +1)-
point sequence {0,0,...,0,1}, where mf=m-m0, the zeros correspond
to the vector ti

T = [-mf +d +1, ..., 0, ..., d] and the one is placed at
t1 = d +1. A few  characteristic functions are presented below:

x0(t,d) – standard (nonrecursive)  interpolation with  mf = m;
x1(t,d,m0) – (mf +1)-point interpolation with functions in ,

such that the first m0 derivatives at t=0 are zero and  mf = m - m0 ;
x2(t,d,m0) – (mf +1)-point interpolation with functions in ,

such that the derivatives at t = 0,1, m0 -1 are zero and  mf = m - m0.
x3(t,d,td) – (m +1)-point fractional-time interpolation with

functions in , such that the vector td of the zero-crossing points
of x3(t,d,td) contains the above vector ti of sampling points and the
vector tr of m0  time instants in-between the sampling times; 

It will be shown below that the numerical implementation of
the last three characteristic functions requires a recursive update of
the additional m0 parameters. Next, the one-sided z-transform XD(z)
of the input sequence has a simple closed-form expression that is
easily derived for m0=0. For the general case  (m0 1), both one-
sided transforms  XD(z) and X(s) in (3) above can be numerically
computed to yield (3). By construction, the characteristic function
x(t) guarantees that any selected segment of an interpolated signal
belongs to a function that passes through the last mf input samples.
Thus, both methods above yield the same expression for  HI (s).

3.  THE  EWD  AND  R-EWD  METHODS

The EWD methods use one of the above interpolation methods
applied to the last (mf+1) input samples xD(k) up to the current time
t=k to obtain an expression x(t) for the interpolated input. The
current output yD(k) is computed as the analog output at the time
instant t=k-d, where  d  is an optional delay. The original EWD
method, exemplified in Fig. 1 takes m0=0 and mf=m, whereas the
R-EWD corresponds to mf=nA+d and amounts to a computation of
x(t) based on the (mf+1) points and the recursive updating of the
m0 parameters. In either case, each new output value is actually
calculated from the response of the analog prototype H(s) to x(t)
determined along the subinterval  k-d-nA  t k-d, with a particu-
lar set of initial conditions. Specifically, along this time interval,
the function y(t), calculated at t=k-d-nA, . . . , k-d-1, must take on
precisely the last nA sampled values previously computed. Appar-
ently, the EWD approach makes the approximation y(t) benefit of
the increased accuracy of the central part of the m-segment
interpolation interval which contains most of the signal energy [6].
In addition, the R-EWD is expected to provide a better digitizing
accuracy due to the smooth left end of the interpolated signal.

3.1 The recursive equations of R-EWD interpolators

In the following, the R-EWD interpolation of the input signal
will be defined by 

where n(t), n=1,2,...,m are the basis functions in .
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Fig. 2.  I/O  signals defining the design based on the characteristic
functions x(t):  the current EWD or R-EWD output y(nA) is
computed from the response of H(s) to the segment x(t), 0 t nA,
of the (mf+1)-point interpolation,  with the auxiliary conditions  
y(0) = y(1) =  . . .  =  y(nA-1)  =  0. The EWD parameters are: (left)
d=0, mf=m=5, nA=3, and m0=0; (right) d=2, mf=m=7, nA=3, and
m0=0. The R-EWD figures are directly obtained from the figures
above simply by ignoring the left-hand sides; the R-EWD parame-
ters are: (left) d=0, mf=nA=3; (right) d=2, nA=3, mf=nA+d=5 (the
effect of the m0 parameters is illustrated in Fig. 3).

The R-EWD method is presented below for the practical case
of the characteristic function x3(t,d,td). Although the derivations for
x1(t,d,m0) and x2(t,d,m0) follow closely this derivation, they are only
of academic interest due to the numerical problems involving
signal derivatives. At the same time, the original EWD method
corresponding to x0(t,d) has been already presented in [1] and [7].
Now, considering the interpolator that corresponds to the charac-
teristic function x3(t,d,td), m is selected such that the coefficients cn

are obtained as the exact solution of the (m+1) algebraic equations
expressed in vector form

where Ai =  (ti), Ar =  (tr), (t) = [ 1(t), 2(t),..., m+1(t)], ti is the
column-vector of the last (mf+1) sampling points, and tr is the
column-vector of the m0 time instants in-between the sampling
times; also, xi is the known vector of the last (mf+1) input samples,
while xr is the “unknown” vector of the input values at the time
instants in tr. For each new current time (k+1), xr is updated with
the interpolated values x(tr+1) calculated at the previous time k.
Thus, defining the new matrices B and V with the relationship

the following recursive equations are obtained:

or

where G  =  (tr+1) B  and  U  =  (tr+1) V. Finally, (9) may be
viewed as a state equation with the state variable xr.

Fig. 3. A typical R-EWD characteristic function x3(t,d,td) with
parameters  d=0, mf=nA=7, m0=2, m=mf+m0=9, and tr

T=[0.5,1.5].

Therefore, an arbitrary initial vector xr0 may always start the
interpolation process provided that the eigenvalues n, n=1,..., m0,
of the m0x m0 matrix U are strictly within the unit circle. Moreover,
the updating process can be considered terminated after a number
K of sampling periods that make all the values n

K negligible. As
the practice shows, these conditions can be always met, and so a
trial and error step of the design is to be performed in order to
determine the largest admissible  m0 and tr that will provide the
smoothest possible interpolation.

3.2  The Time-Domain Invariance Synthesis

The principle of time-domain invariance used to digitize
analog systems assumes that identical inputs, xD(k)=x(t)|t=k , yield
identical outputs, yD(k)=y(t)|t=k , along the entire time axis. Thus,
this time-domain equivalence [5] implies the identity of the z-
transforms YD(z) HD(z)XD(z) and  Z{Y(s)}. With the notation of
[4, Sect. 4.3.1], the expression  Z{Y(s)} Z{[ -1[Y(s)]]| t = k } is the
z-transform of the samples of y(t). Thus, the above identity yields
the transfer function

The crux of the design is the selection of the characteristic
function x(t), together with the method for calculating the corre-
sponding response  y(t) of the analog prototype H(s). Following the
same line of the analysis performed in [7], the class of admissible
characteristic functions, x(t), corresponding to an (mf+1)-point
interpolation will be the set of functions whose zeros are mf

adjacent integers, and satisfy m0 additional conditions (m0 0).
Figs. 2 and 3 illustrate the general shape of the admissible charac-
teristic functions x(t), as well as the corresponding form of the
response y(t) of the analog filter. Moreover, Fig. 2 shows that the
time origin is chosen such that there are nA interpolation segments
between t=0 and the time instant where the current digital output
is computed.

3.3  Derivation of R-EWD transfer functions

The characteristic function x3(t,d,td) is now considered and m
is chosen such that the coefficients cn in (4) are obtained as the
exact solution of a modified set (5) of (m+1) algebraic equations.
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Fig.4. The digitizing error ED( ) = 20 log10(|e
-jd H(j )-HD(ej )|) 

for three digital equivalents of order nD=7 of the transfer function
H(s)=32(s2+0.2s+2) / [(8s2+4s+1)(4s2+s+1)(s+1)].Thin solid line:
the iterative WLS design. Dashed line: the EWD filter. Thick solid
line: the R-EWD filter (sampling period = 0.75 sec,  d=0, mf=nA=5,
m0=2, m=mf+m0=7, and tr

T=[1/3,2/3]).

This time, the matrices Ai =  (ti) and Ar =  (tr)  are computed for
the vectors ti

T=[0,1,...,mf] and  tr containing the m0 fractional times
within the interval [0, mf]; xi

T=[0,...,0,1] is a vector with (mf+1)
components and xr is a vector containing m0 zeros. For compu-
tational reasons, the functions n(t) are selected as linearly
independent functions with simple one-sided Laplace transforms.
The new form of (5) will be referred to in the following as (5').
Accordingly, the one-sided Laplace and z-transforms of x(t) and its
sampled form xD(k), are rational functions of the form

where both denominators are monic polynomials with the same
degree (m+1). The derivation of R(s) from (4) and (5') is tedious
but straightforward. Next, if m0=0, the numerator of  XD(z) is
simply z. This is an immediate result of the fact that all the values
of the characteristic function at the sampling times  -  <  t
nA+d-1 are zero, while the first nonzero value  x(nA+d)=1 yields the
relationship z nA+d XD(z) = 1. If m0 1, the relations (3), (7),

and (9) can be used to show that Pmo(z) becomes a monic polyno-
mial with the roots precisely the eigenvalues n of the matrix U in
(9). At the same time, the polynomials Q(s) and QD(z) are defined
by their roots. Indeed, the roots of Q(s) are the poles rn of the
Laplace transforms of n(t), whereas the roots of QD(z)
are . Finally, in order to satisfy the initial conditions
y(t)=0,  for  t = 0, 1, . . . , nA-1, as illustrated in Fig. 2, the expres-
sion of Y(s) in (10) exhibits both a zero-state and a zero-input
component: Y(s)=Yzs(s)+Yzi(s) = X(s)H(s)+Yzi(s). A first result is

(12)

whith the polynomial z nA + g1 z nA-1 + ... + gnA defined by its
roots , where sn, n=1,...,nA, are the poles of H(s). Then,

(13)

In order to satisfy the initial conditions, the coefficients fk must
be chosen such that the nA leading terms of the numerator of HD(z)
in (13) are canceled. This is achieved with the recursive equations

(14)

4.  CONCLUSIONS

The main contribution of the paper is the incorporation of the
new class of recursive interpolators into the previous EWD method
[1] that was developed for the computation of digital equivalents
of analog filters with application to fractional delay and sampling
rate conversion [2], [7]. The smoothening properties of the
recursive interpolators support the claim that the proposed R-EWD
filters provide lower digitizing errors than the original EWD filters.
The latter were proven in [7] to be near-optimal equivalents of
their analog counterparts. Thus, the proposed filters are not only
efficient tools for FD applications, but also very accurate digital
equivalents of the prototype filters (designed in analog form)
whose delays are to be controlled. Some of these considerations are
illustrated in Fig. 4. It is worth noting that the poles of the R-EWD
and WLS filters (including the m0 extraneous poles) are remarkably
close for reasons related to the analyticity of H(s) and HD(z) [7].
Yet, the accuracy of the R-EWD filter is about two orders of
magnitude better than that one of the other two filters.
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