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ABSTRACT 
 
The paper develops the analytical foundation for two IIR filter 
design methods that have been previously conceived as numerical 
algorithms for the approximation of analog filters: the extended 
window digitizing (EWD) method and the matched–pole (MP) 
frequency sampling design. The derivation of the EWD equations 
is based on a sampled data system representation, and provides a 
rigorous foundation for the MP method. Also, an original analysis 
of a previously proposed optimization process is done by using the 
equations developed for the sampled data system. 
 

Index Terms — IIR filters, approximation algorithms, signal 
reconstruction, variable fractional delay 
 

1.  INTRODUCTION 
 
The continuous increase of the computing power during the last 
two decades led to a flurry of activity in the field of optimal design 
of IIR filters with arbitrary magnitude and phase responses.  Yet, 
the present paper focuses on the field of optimal digitizing of 
analog filters where very little work has been previously done. In 
this direction, it is worth mentioning [1] and [2, pp. 515–519], 
which use the weighted least squares (WLS) minimization, as well 
as [3, pp. 218–221] which presents a frequency sampling technique.  
There is no final answer to this problem so far, since imposing 
arbitrary magnitude and phase responses leads to difficult 
problems related to the algorithm convergence, filter stability, and 
the need for a trial-and-error selection of the appropriate weighting 
function.  At the same time, there is an increased interest in a 
different direction: the incommensurate fractional sampling rate 
conversion and the related problem of variable fractional delay 
(VFD) filter design [4].  This requires some form of signal 
reconstruction from discrete signals under the assumption of 
bandwidth limitation.  Yet, since the output samples are obtained 
by processing finite sets of data, the inherent signal truncation 
enlarges the actual bandwidth and produces large errors toward the 
ends of each new reconstruction interval.  Traditionally, this 
problem is alleviated by taking the middle sample of the current 
interval as the current output, thus introducing a large delay equal 
to half the entire reconstruction interval [4] –[6].  Clearly, the delay 
cannot be made arbitrarily short without affecting the precision. 

A different solution to the VFD problem [7] is based on a by-
product of the IIR filter design with the so-called extended window 
digitizing (EWD) method [8], illustrated in Figs. 1 and 2(a) below. 
In Fig. 1, an (m+1)–point trigonometric interpolator, TI,  and the 
analog prototype HA are combined into just one sampled data 
system with the same number of system modes as HA.  To this end, 
each output segment y(t), k–1 < t ≤ k, shown in Fig. 2(a) with thick 
solid line, is generated recursively from the response y(t) of the 

analog prototype HA to the (virtual) signal xTI(t) that interpolates 
the last (m+1) input samples up to the current time k.  The method 
is characterized by the fact that the auxiliary conditions needed to 
calculate the response y(t) of HA(s) are selected as the amplitudes 
of the last nA output samples {y(k–1) ,...,  y(k–nA)}.  This provides a 
natural match for the initial conditions of the analog and digital 
filters, and so it incorporates the interpolation step into the s– to z–
domain mapping step.  Thus, the two internal blocks TI and HA in 
Fig. 1 are processed as an entity, as opposed to [5], [6] which use a 
cascade connection of the input interpolator and the prototype. 
Moreover, at each current time k, the intersample segment, shown 
in Fig. 2(a) with a thick line is available for VFD applications. 

 This sampled data approach to the VFD problem assumes that 
the necessary fractional delay is to be obtained at the output of a 
filter.  Such a filter may be already required by the system, or 
needs to be built anyway, as a VFD filter.  Instead, this filter is 
now designed in analog form first, and then digitized with the 
EWD method.  At the same time, the design of analog filters is a 
well–established subject that includes not only closed form 
solutions and highly advanced analog approximation techniques, 
but also well–tested computer programs to carry out the designs.  
Also, many applications are defined in terms of analog models but 
are implemented digitally for better accuracy and reliability. 

The above features of the EWD method let the designer 
determine the conventional IIR filter equation, together with a set 
of equations that approximate some desired intersample output [7]. 
As these equations are strongly interrelated, their optimization 
reduces to the minimization of the digitizing error of the IIR filter. 
Yet, the basic algorithm [8] is time consuming.  The solution to 
this problem was provided by the alternative derivation of the 
EWD filter with the matched–pole (MP) frequency sampling 
method, previously proposed in [9].  The IIR filters designed with 
the MP method were shown to be equivalent to the EWD filters, 
and then a fast optimization algorithm based on the MP design was 
presented in [10].  Thus, the optimal design is to be done with the 
simple and efficient frequency–domain MP method, whereas the 
more complex time–domain EWD procedure is to be used only 
when intersample values of the filtered signal are needed.   Finally, 
in contrast to the WLS procedure, which relies on a “good guess” 
of the weighting function, the MP optimization is straightforward.  

The paper is organized as follows.  The derivation of the 
EWD equations based on its sampled data system representation is 
done in Section 2.  The result provides a rigorous foundation for 
the so–called matched-pole (MP) frequency sampling method, 
previously proposed in [9].  The MP filter design method is briefly 
presented in Section 3.  Then, an original analysis of the 
optimization process, previously proposed in [10], is done in 
Section 4 by using the equations developed in Sections 2 and 3 for 
the sampled data system.  The concluding Section 5 summarizes 
the main contributions of the paper. 
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Fig. 1.  Block diagram illustrating the  EWD method. 
 

2.  DERIVATION OF THE EWD EQUATIONS 
 
Throughout the paper, the time is normalized to the sampling 
period, and so the folding frequency is  ωf  = π/T = π.  The signals 
x(t) and y(t) are the input and output of the analog filter defined by 
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where b(s) and a(s) are known polynomials, and the roots of a(s) 
are assumed to be simple (real or complex).  The digitizing 
problem consists in finding a transfer function, 
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such that the frequency response HD(ejω) represents a “good 
approximation” of HA(jω).  The input and output of the designed 
digital filter are denoted below by xD[k] and yD[k], respectively, 
while the sampled values of x(t) and y(t) are x(k) and y(k). The 
block TI&HA in Fig. 1 is a sampled data system with discrete input 
x[k] and continuous output y(t). 

In its original form, the EWD method is implemented as a 
numerical approximation [8] which leads to the conjecture that the 
polynomials a(s) and g(z) in (1) and (2) are given by the relations 
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The reason that this method is referred to as the EWD is that, 
at each current time k, the interpolation time window extends to the 
left of the current time  k  along a segment of length m ≥ nA.  
Nevertheless, it is worth noting that the actual interpolation is 
transparent to the designer, as proven in Section 2.1 below by the 
derivation of the EWD equations. Moreover, these equations prove 
that the expression of g(z) in (3) is rigorous. 
 
2.1.  Impulse Response of the Sampled Data System  
 
In the following, m is odd for the sake of a more concise 
presentation.  The interpolation space is spanned by 2M linearly 
independent functions {cosωn, sinωn}, n = 1, …, M,  where M = 
(m+1)/2  or,  equivalently,  by  the  exponentials  e jωnt  and  e – jωnt , 
n =1,…, M.  The frequency nodes {ωn | 0 < ω1< …< ωM =ωmax< π} 
are selected according to the procedure developed in [10], and 
grouped in the vector w = [–ωM , …, –ω1 , ω1 , …, ωM ] of length 
2M = m+1. Then, the function  xTI(t)  that interpolates the current 
set of (m+1) input samples is represented by the expression 
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The coefficients ζn are related to the input samples x(ℓ) as the 
unique solution of the linear algebraic equations 
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Fig. 2.  Input and output signals of the sampled data system (nA= 4,  
m = 7).  (a)  Interpolated input, x(t), and the output  y(t);  (b)  the 
eigenfunction x0(t) of the TI block;  (c)  the response  y0(t) of the 
sampled data system to x0(t). 
 
 
In order to implement the previously defined auxiliary conditions 
{y(k–1) ,..., y(k–nA)} of the analog block HA with the unilateral z– 
and Laplace transforms, the time origin is temporarily selected 
such that the discrete input impulse is applied at t = nA.  Then, the 
first nonzero segment of the impulse response hsd(t) of the sampled 
data system occurs on the time segment [nA–1, nA].  The 
expression of the Laplace transform Hsd(s) of hsd(t) is derived 
below by using the particular eigenfunction of TI, x0(t), defined in 
the interpolation space as a function with zeros at nA–m, …, nA, as 
shown in Fig. 2(b).  It is worth noting that x0(t) and x0[k] can be 
expressed as linear combinations of the functions  e jwnt  and e jwnk, 
respectively, with the same coefficients, ζn

0, n = 1, …, m+1.  The 
z–transforms of the (m+1) terms of the sampled sequence x0[k] 
provide the z–transform XD

0(z) with a denominator of degree 
(m+1).  At the same time, the delay property and the initial value 
theorem of the z–transform require 

 A 0 0lim ( ) 1, and lim ( ) 0, 1,..., 1 ,D D Az z
n kz X z z X z k n

→∞ →∞
= = = −  

for  consistency with the condition that the m samples prior to k = 
nA are zero. 
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Fig. 3. Digitizing errors, |E(ω)|dB , for the lowpass analog filter 
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Thus, the z–transform of x0[k] becomes 
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and does not even require the knowledge of the coefficients  ζn
0.  

Then, the coefficients ζn
0 are uniquely defined by the partial–

fraction expansion of the rational function in (6).  As the poles of 
X0(z) are simple, a tedious but straightforward computation yields 
the complex coefficients ζn

0 and, finally, the real form of the 
Laplace transform of x0(t), 
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 (8) 

Since x0(t) is exactly interpolated from any consecutive (m+1) 
samples in x0[k], the zero–state response of the analog model HA 
can be obtained from the Laplace transform Yzs(s) = X0(s)HA(s), 
whereas the actual response y0(t) of the sampled data system 
TI&HA requires the additional zero–input component, yzi(t), 
corresponding to the auxiliary conditions, which are nA 
consecutive zeros, as illustrated in Fig. 2(c).  Apparently, the 
denominator of Yzi(s) is a(s), and so the Laplace transform of the 
total response y0(t) becomes 

 0 0 A
zi

zi
( )( ) ( )( ) ( ) ( ) ( ) ,

( ) ( ) ( )
c sp s b sY s X s H s Y s

q s a s a s
= + = +  (9) 

where the nA coefficients of the polynomial czi(s) will be 
determined in Section 2.2 below, and the other four polynomials 
were defined above by (1), (7), and (8). 

Now, let  hsd(t)  be the response of the sampled data system to 
the discrete impulse δ[k], and assume that the input of the sampled 
data system is x0[k] ─ the sampled eigenfunction of the interpolator 
TI.  Then, the total response y0(t) to x0[k], can be also written as 

000 sd( ) [ ] [ ]y t x h t∞
= −∑   , which yields an alternative form of (9),

0 00
0

sd sd( ) [ ] [ ] ( ) [ ] ,D
s sY s x e H s X e H s∞ −= =∑ 

  where XD
0(e s ) is the 

z–transform (6) of x0[k] with  z  replaced by  e s. 

 
 

 
 
 
 
 
 
 
 
 

 
Fig. 4. The Chebyshev norm ||E(ω)|| plotted as a function of the 
time shift τ for the EWD design illustrated in Fig. 3  (τopt=0.365). 

 
 
 Finally, the Laplace transform of the impule response of the 

sampled data system is given by 
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2.2.  Transfer Function of the EWD Filter  
 

According to Fig. 1, the output of the digital IIR equivalent to 
the analog prototype HA is the sampled output of the sampled data 
system TI&HA.  While the latter is a linear periodically time–
varying system with period T=1 and does not have a transfer 
function, the resulting discrete time system is time invariant with a 
transfer function that can be obtained directly from (10), 
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where the symbolic notation Z{Y(s)} = Z{L-1 [Y(s)]|t=k} represents 
the z-transform of the samples of y(t).  This is done with the 
traditional the s– to z–domain transformation based on the partial–
fraction expansion of rational functions.  The two factors a(s) and 
g(s) in the denominator become g(z) and qD(z), respectively, as 
defined in (3) and (6). Thus, (11) becomes 
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where the only unknown coefficients are γ1, …, γnA. In order to 
obtain the final (causal) expression (2) of HD(z), these coefficients 
are calculated such that the first nA leading terms of the numerator 
are canceled.  This requirement is satisfied by the following 
recursive equations: 
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Now, the partial–fraction expansion of the rational function 
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is mapped back into the s–domain to provide the polynomial czi(s): 
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In conclusion, the derivation of Eqs. (10)–(13) proves that the 
EWD filter is described by a transfer function of the form (2) with 
the denominator g(z) rigorously defined in (3). 
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Fig.5.  Inverse Laplace transforms of g(es) e–τs Hsd(s) with effective 
widths 11 for  τ = 0  (thin line), and 7 for the optimal value τ = 
0.365 (thick line). The stems show the m coefficients of the 
optimal filter as samples of the inverse Laplace transform. 
 

3.  MATCHED–POLE FREQUENCY SAMPLING DESIGN 
 

The matched–pole (MP) frequency sampling method for IIR filter 
design was shown in [9] to be equivalent with the design of the 
basic EWD filter transfer function (2) based on the relationships 
(3) which were proposed as a conjecture. Now, in the light of the 
above conclusion of Section 2, the proof of the EWD–MP 
equivalence [9] becomes rigorous. Briefly stated, the digitizing of 
filters by frequency sampling is reduced only to the computation of 
the numerator f (z) in (2), while the denominator g (z) is fixed and 
defined by (3). The design parameters are  m > nA + 1 (an odd 
number), M = (m+1)/2  and the frequency nodes {ωn | 0 < ω1< …< 
ωM =ωmax< π} which are determined according to the procedure 
developed in [10].  Thus, (m+1) equations 
 ( ) ( )A ( ) , 1, ..., ,n

n nj jw wf e H j w g e n M= = ± ±  (14) 

are to be solved for the unknown (m+1) coefficients of  f (z). 
With the poles of g(z) rigorously matched to those of a(s), the 

IIR filter design has become an FIR frequency–sampling problem 
referred to as the matched-pole frequency sampling design. 
 

4.  ANALYSIS OF THE OPTIMAL PROPERTIES OF THE 
SAMPLED DATA SYSTEM 

 
Since the sampled data system analyzed in Section 2 is a linear 
periodically time–varying system with period T=1, the output 
depends on the particular time instant within one sampling period 
when the current input sample (x[k] in Fig. 2(a) is applied.  Based 
on this fact, it is argued in [10] that time shifts of length –1 < τ < 1 
are equivalent to adding a group delay τ to the analog prototype 
that may be beneficial to the accuracy of the digitizing process.  
Now, the MP equations simply become 
 ( ) ( )A ( ) , 1, ..., ,n

n n nj j jw w wf e e H j w g e n Mτ−= = ± ±  (14’) 

and the implementation of this delay in the equations derived in 
Section 2 above requires only the change of αn

0 and βn
0 in (8) to 
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with the subsequent modifications of the polynomial p(s). 
 
4.1.  Optimal Equiripple EWD/MP Design 
 
The optimization developed in [10] is done with the MP fast 
algorithm that solves (14’) for the (m+1) real coefficients of f (z–1) 
and minimizes the Chebyshev norm, 

 
max0

( ) max ( ) ,E E
ω ω

ω ω
< <

=  (15) 

of the digitizing error, 
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where  ωmax is predetermined, g (z)  is given by (3), and τ  is to be 
obtained in the final stage of the optimization.  The example 
presented in [10] is used below in order to assess the results of 
Section 2.  Fig. 3 shows typical plots of |E(ω)|dB = 20 log10 |E(ω)|, 
corresponding to τ = 0.365, m = 11, and ωmax = 0.7 π. The 
optimization, illustrated in Fig. 4, is performed by repeatedly 
running the MP algorithm for values of τ within the interval [-1,1] 
and plotting ||E(ω)|| as a function of τ. Typically, this plot is very 
smooth and has a single minimum in the interval [0,1]. 
 
4.2.  Main Property of the EWD/MP Design 
 
There is a conceptual difference between the MP frequency 
interpolation (14) and the frequency sampling method that is used 
in [3, pp. 218–221] to find a discrete transfer function (2) whose 
frequency response interpolates a given complex expression 
HA(jω) at equally spaced frequency points. The better performance 
of the MP method is directly related to the particular choice of the 
function to be approximated, typical of digitizing methods.  
Accordingly, the well–defined denominator g(z) leads to the 
approximation of the function HMP(s) = g(e s) Hsd(s) which, unlike 
HA(s), is an entire function of s and its inverse Laplace transform 
has compact support [11, Theorem 10–6] with width equal to 
(m+1) [10].  Specifically, the factors of HMP(s) are of the form 

 
( ) ( )1 1and ,

n n

n ns p s je e
s p s

ω

ω
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and are entire functions due to the pole–zero cancelations.  It 
follows that the fundamental difference between the direct 
interpolation [3] and the FIR–like interpolation (14) stems from the 
dual form of the Nyquist–Shannon sampling theorem [2],[12], 
where ω is viewed as a “time variable” whereas t becomes a 
“frequency variable.” Thus, the above derivations show that the 
conditions of the sampling theorem are far from being satisfied by 
the method described in [3], where  hA(t) = L–1{HA(s)} extends 
over an excessively wide time segment, but are fully satisfied by 
the MP design since  hτ (t) = L–1{g(es) e–τs Hsd(s)} is strictly 
“bandlimited” being zero outside an interval of finite length [12].  
This fact is illustrated in Fig. 5 where h τ (t), computed numerically 
for the system in Fig.3, exhibits an effective width of 11 samples 
for τ = 0  and  7  samples for  τ = 0.365.  
 

5.  CONCLUSIONS 
 
The paper derived the exact equations of EWD and MP filters for 
both the conventional design and the design with a delay τ (τ < 1) 
which amounts to digitizing se τ− HA(s) rather than HA(s).  While 
this modification only slightly increases the inherent group delay 
of HA(s) by τ, it allows for a dramatic decrease of the digitizing 
error (usually, by more than one order of magnitude with respect to 
traditional methods).  Also, in contrast to the WLS optimization, 
which relies on a “good guess” of the weighting function, the MP 
optimization is straightforward.  Finally, based on the EWD/MP 
identity, the optimal MP parameters can be used by the time–
domain EWD design when intersample values of the filtered signal 
are needed for sampling rate conversion or VFD applications. 
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