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Correspondence

Comments on “Further Improvements in Digitizing continuous-time
Continuous-Time Filters” sampler conssfu“:;on p:::;ryie sampler
Grigore Braileanu _xgbl __/_Jx(_qu s 'XL(’)DI H(s) Iﬂbl — Iﬁﬂ
axn)—r_ h(1) h (KT)
Abstract'—?l'_hi_s corresponder_]ce points out tha_t an algorit_hm pr_oposed H (z)
as a new digitizing method is, in fact, an extension of the linear interpo- D

lation design. Unlike previously published extensions, which incorporate
the interpolation step into the s- to z-domain mapping step, this algorithm Fig. 1. Block diagram of the cascade-type interpolation design (CID).
cascades the interpolator and the analog filter. Original design formulas
derived for a rigorous comparison support the assertion that the above al-

gorithm yields less accurate results than the other interpolation designs.  following as thecausal cascaded interpolation desi¢@CID), where
Index Terms—Filter design and structures, sampling and interpolation, the causality ensues from the real-time type of calculation used in [1].
signal processing theory and methods. The above mentioned alternative options i)—iii) stem from two re-
sults of the theory of interpolation at equally spaced points [8]. Specif-
ically, the inherent oscillations of the interpolation error are usually
exacerbated along the end segments of the interpolation interval, and
A state-space algorithm, called “weighted sample” is presented in @ the same time, the interpolation with trigonometric polynomials en-
as a new digitizing method. This algorithm implements a multiple-sefpys much better numerical properties [8]; therefore, it should be pre-
ment interpolator in a cascade defined in [1, Fig. 2], which is repréerred to the interpolation with algebraic polynomials [5]. Accordingly,
duced in Fig. 1 for convenience. Fig. 1 is a typical setup used, for exigonometric polynomials were used in [5]-[7] to calculate each new
ample, by the step-invariance method (wh&reis a zero-order-hold valuey{(k + 1)T'} from the response of the analog prototyli¢s)
element) and the linear interpolation method (whgreis a two-point  of ordern 4 determined along aextended time segmefk — na +
linear interpolator) [2]-[4]. The present correspondence points out tHafl" < ¢ < (k+ 1)T with a particular set of initial conditions. Specif-
the above algorithm is, in fact, an immediate extension of the linear iigally, along this time interval, the functigy(#), which is calculated at
terpolation method from a two-point to am(4 1)-point interpolator ¢ = (k—na +1)T, ..., kT, must take on precisely the last sam-
S¢ built with algebraic polynomials and cascaded with the analog filtgded values previously computed. Thus, this design, which is referred
H (s). Next, itis shown that other digitizing options, better than the into as theextended window desiggWD), provides a natural match for
mediate extension, are available when the lemgitf the interpolation the initial conditions of the analog and digital filters and incorporates
interval exceeds one. The most appealing of these options, which witeinterpolation step into the to z-domain mapping step. Apparently,
previously proposed and analyzed in [5]-[7], are this makes the approximatiarit) benefit from the increased accuracy
i) the composition of the interpolation and filtering operators int@f the central part of the:-segment interpolation interval that, usually,
just one operator by incorporating the interpolation step infgPntains most of the signal energy [8]. This salient feature of the EWD
the s- to z-domain mapping step (as opposed to the sequentiﬁlin_ contrast to the CCID, which uses only the right-end segment of
approach [1], which cascades the interpolator and the filter); the !nterpolapon interval to calculate the current output of the digital
ii) the causal and noncausal designs with optional additional polgguivalent. Finally, the problem created by the inaccurate end segments

|. INTRODUCTION

atz = 0: was addressed in [5]-{7] by the use of noncausal interpolators, which
iii) the interpolation with trigonometric polynomials (as opposed tdiscard the end segments in the final stage of the design.
algebraic polynomials). The main contribution of the present correspondence is a rigorous

First of all, the algorithm proposed in [1] uses an algebraic polynf€rformance analysis of the existent digitizing methods based on inter-
mial interpolation to construct the outpat:(¢) of them-segment in- Polation with algebraic polynomials applied to causal, as well as non-
terpolator along the current sampling periehl < ¢t < (k + 1)Tand causal, digital filter design. To this end, the paper addresses the fact that
applies this output sequentially to the input of the analog filfés). the CCID considered only causal algebraic interpolators, whereas the
Then, the outpug{(k + 1)T} of the designed digital filter is derived EWD has been presented in [5]-{7] under a very general and numer-
from the response of the analog filter:te (¢) with an initial state at ically stable algorithmic form that is more suitable for trigonometric
t = kT equal to the state reached by the analog filter at the end of #féerpolators. Thus, based on a unified approach, original closed-form
previous computation done ¢k — 1)T < t < kT'. Therefore, the re- d€sign expressions that are suitable for the frequency domain analysis
sulting transfer functiod » ( =) is given by the impulse-response equiv-2re derived below. As these expressions encompass both the cau;al and
alent of the cascadgSc, H(s)}, thatis, the: transform of the sampled Noncausal forms of design, the generic notations CID and EWD will be
responsé.p, (kT) of {Sc, H(s)} to the input impuls@(kT). For this used hereafter. Finally, itis worth mentioning that the entire analysis is
reason, the “weighted sample” algorithm [1] will be referred to in thEeStricted to the interpolation with algebraic polynomials in order to i)

provide the same basis for the performance evaluation of the CID and
EWD and ii) point out that the latter yields more accurate digital equiv-
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performance analysis is done in Section Il by analyzing the frequenc a) CID b) EWD
responses of the analog filters and their digital equivalents. Concludin | 1 I
remarks are provided in Section IV. x(t) x(®) I
05 05 :
Il. DERIVATION OF THE CID AND EWD TRANSFERFUNCTIONS FOR I
INTERPOLATION WITH ALGEBRAIC POLYNOMIALS 0 AVA - 0 !\ NN
The following design of digital filters from analog prototypes is  [m+d+l ;=0 dd+l -md+n, 0 ¢ n, din)|
based on _Fig. 1. For conve_nience_, the continuous-time vgriab_lé 65432101234 43210123456
be normalized to the sampling peridd therefore, the sampling times
will be designated by = %, wherek takes on integrals values. The I
continuous-time signals(t), =« (t), and y(t) will be.d_efln(_ed asin .. y(©® 03 y(©) |
Fig. 1, and the input and output of the designed digital fif&s (=)
will be denoted by:p (k) andyp (k), respectively. The orders of the 02 02 !
analog and digital filters will be » andn ;. Moreover, the uppercase 0.1 0.1 ! t=n,-1
notations of functions of the variables and = will, respectively, 0 ¢ 0 xp
represent the Laplace andtransforms of the corresponding signals t=0 0 ) Ba
denoted with lowercase letters.
6-54-3-2-101234 4-3-2-1012345¢6
Time Time

A. General Time—Domain Invariant Synthesis

Given an analog filtef (s), the traditional general time-domain in-Fig. 2. Definition of the CID and EWD in terms of the test signals for a
variant synthesis [4] generates a digital equivalBit(z) such that noncausal interpolation witm = 7, d = 2, n4 = 3 (the causal design

. . ) N : . is done withd = 0) (a) CurrentCID outputy(1) is computed from the
equivalentinputs:(t) andx (k) = (#)|:=« yield equivalent outputs zero-state respong# the analog filter to the segmentt), 0 < ¢ < 1 of the

y(t) andyn (k) = y(f)|:=« along the entire time axis and under the,, 1 1)-point interpolation. (b) CurrenEWD output y(n_1) is computed
conditions of initial res{2, Sec. 3.5]. Thus, according to [4, Sec. 9-4]from the response of the analog filter to the segmen}, 0 < ¢ < n.4 with
this time-domain equivalence implies the identity of theransforms  the auxiliary conditiong/(0) = y(1) = --- = y(n4 — 1) = 0.
Yin(z) 2 Hp(2)Xp (z) andZ{Y (s)}. The latter expression uses the

. . A Clrer .
notation of [3, Sec. 2.4.1], whet®{Y (s)} = Z{[L [V (s)llli=x} IS B_ Definition of the CID and EWD Methods
the z-transform of the samples gf(¢). With this notation, the above

identity gives the designed transfer function Fig. 2(a) and (b) has the dual purpose of presenting the CID and
EWD first and then defining the admissible test signdly necessary
Ho(s) = 1 Z{v (). 1) for the_tlme-d.omalr_l mvgrlant synthesis based on the setup in Fig. 1
Xp(z) In this section, Fig. 2 is used to present the CID and EWD recursive

generation of the output; thereforg,is the sampling time of the pre-
The crux of the design is the selection of the test sigrial together viously computed output, whereas @ 1) is the current time. As the
with the method for calculating the corresponding respar(gg of  CID and EWD are variants of just one method—the interpolation de-
the analog prototyped (s). Particular selections may produce theign—they compute the next output sample in the same manner but
traditional impulse- and step-invariance methods, the linear interpgith different initial conditions. Specifically, they compute the next
lation method, or the two possible extensions of the latter—the Cldutput sample as the valueta& to + 1 of the response of the analog
and EWD—as shown below. At the same time, in order to satisfy thiger H (s) to the same signalc(¢) built by Sc from the last(m + 1)
conditions of initial rest, the test signal applied to the interpol&ter input samples on a time interval ending witk= ¢, + d + 1, that is,d
and the digital filter must be zero prior to some initial tiae Finally, sampling periods after the current time. Obviouslys 0 corresponds
the interpolation setup in Fig. 1 implies the identity (t) = «(t) for  to a causal design, whereas any positive integproduces a digital
t > to. Therefore, in the context of time-invariant synthesis, the claiier whose causal implementation requires an additional output delay
of admissible test signalg(¢) corresponding to ann + 1)-point 4. The conceptual differencbetween the CID and EWD stems from
interpolation will be the set of polynomials—algebraic or trigonothe way the initial conditions of the analog filter are defined. Thus, the
metric—whose zeros arex adjacent integers up to and includingCID takes the initial state of the filtdf (s) att, equal to the final state
t = to. Restricting this correspondence only to algebraic polynomialguring the calculation performed along the previous sampling period
all the admissible test signals that satisfy the above requirements wjl- 1 < ¢ < ¢,. Hence, only one segment of the interpolation interval
be proportional to time-shifted variants of the generic polynomial  is used (i.e.to < t < t, + 1). By contrast, the EWD calculates each
new valuey(to, + 1) from the response of the filtef (s) determined

g(t) = it(t —1)(t=3)...(t—=m+1) (2) along an extended time segment-na + 1 <t < ¢ + 1, whereas
m! the functiony(¢) takes on precisely the last; output values calculated
att =ty —na+1,...,to — 1,%9. The numerous options offered by

whose polynomial form leads to simple Laplace arAglansforms. For

example the multiple-segment interpolation design are illustrated in Table | with

reference to Fig. 3. At the same time, the main EWD features will be
Po(s) analyzed in Section Ill, together with the drawbacks of the CID, which
are direct consequences of the single-segment sequential approach.
A ; z The following derivations of the CID and EWD transfer functions

Go(2) = Z{lgu®)]l=r} = (z = 1)m+i () are based on the admissible test signdlg that are necessary for the
time-domain invariant synthesis applied to the setup in Fig. 1. To this

whereu(t) is the unit step, an®.. (s) is a polynomial ins given by a end, according to Section II-A abowug, in Fig. 2 is viewed now as the
straightforward calculation. time instant when the conditions of initial rest are applied. Apparently,

G(s) 2 L{g(t)a(t)} =

mlsmtl



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 10, OCTOBER 2001

TABLE |
SIX VARIANTS OF THE DESIGN BASED ON (m + 1)-POINT INTERPOLATORS
ILLUSTRATED IN FIG. 3FORm = 10

2433

P(s,m,d). For the causal design (i.€.,= 0), the following relation-
ships hold:

- a(t) = =t(t + D)(t+2)... (t+m — Du(t)
Name of Type of Domain Type m.
design interpolation of y(t) n, | np of =(=D)"g(=t)u(t)
method polynomial design P(s,m, 0) =P (—s) (5)
| ¢ algebraic ~1st<0 10 19 Causal where the polynomial®,,(s) have been defined in (3).
2| A-EWD algebraic -10<2<0 10 ausa It is worth noting that the same expression (4)Hf (=), which
d=0) was derived here as the generalized time-domain invariant equivalent
-10<£<0 | 10 of H(s) alone, can be also derived as thgulse-response invariant
3| T-EWD | trigonometric 10 equivalent of the cascadeSc, H(s)}.
-8<1<0 8 Finally, the CID characterization formulated in Proposition 1 below
4 CID algebraic Bete 15 can be proven by considering (4), together with the total cancellation
Noncausal of the factorsz — 1)V in Homp (2).
5| A-EWD algebraic 6 Proposition 1: The causal implementation of the CID transfer func-
-8<t<-2 10 d=2) tion increases the order of the digital filtéo 1.,y = n.4 +m — 1, with
6] T-EWD | trigonometric m — 1 poles atz = 0, and the nonzero poles, = ¢**T, where the
valuess,,n =1, 2, ..., na are the poles of the analog prototype.
1 ~ ’ j ) ) S~ D. Derivation of the A-EWD Transfer Function (Interpolation With
éd // )L Algebraic Polynomials)
0.5 While the CID is restricted to the interpolation with algebraic poly-
\ m nomials, two EWD forms corresponding to the interpolation with alge-
° £m+1 i Ik el braic and trigonometric polynomials are availa_ble. They will be referred
o / to as the A-EWD and T-EWD methods. In view of the facts that the
2-05 \ T-EWD method was extensively analyzed in [7] and the CID was pro-
_ \ posed in algebraic form, this correspondence is restricted to the interpo-
E‘ -1 lation with algebraic polynomials in order to provide the same basis for
« the performance evaluation of the CID and EWD. Thus, an expression
15K similar to (4) is derived below for the particular A-EWD transfer func-
tions designed with causal or noncausal algebraic interpolators.
ol Equation (1) is to be used here again for the particular formgof
andy(t) corresponding to Fig. 2(b). Thus(t) = g(t +m — L)u(t),
25 . . : \ s . . ) L whereL £ n4 + 4. In addition, X (s) and X D(z) can be easily cal-
10 9 -8 -7 6 $H5 -4 -3 -2 -1 0 culated as in (4) to give
Time O(s.m. T) T,
, J(s.m, A z
Fig. 3. Typical(m + 1)-point interpolation of the input signéin = 10). X(s) = mlsm+l 7 L=na+d, Xp(z)= (z — 1)ym+1 ©)

Dashed line z(t)—the original input.Thin solid line x(t)—the entire

interpolated signalThick solid line the central part-8 < ¢+ < —2 ofthe where )(s,m, L) are polynomials ins and satisfy the following

interpolated signal considered to be “current input” by a noncausal design Wf-""?oposition 2.

d = 2. Small circlesthe(r + 1) sampled values of the original input. Proposition 2: If the EWD output intervad < ¢ < n 4 is centered
within the inputinterval-(m—L) < ¢t < LasinFig. 2(b) (i.e., always

to = 0 for the CID, andto = n4 — 1 for the EWD, whereas the time I thg case of causal interpolation with = .4), then the following

origin shown in Fig. 2 is chosen such that all the signals consideredfations hold:

the remainder are zero along the negative side of the time axis. .

9 9 Q(s,m,L) =P(—s, m, d), LE2A4+d=m~—d

C. Derivation of the CID Transfer Function m=mna +2d. ()

In the spirit of the general time-invariant synthesis, the CID transfer  Proof: For L = m — d, the particular form of the generic poly-
function H(») = Hcin(z) is obtained by expressing (1) in termsnomial ¢(¢) defined in (2) generates the CID and EWD test signals
of the signalsc(t) andy(t) defined in Fig. 2(a). Accordingly, (1)—(3) woip(t) = g(t + L — 1)u(t) andeewp (t) = g(t +m — Lyu(t) =
yield the following expressions(t) = g(t+m—d—1)u(t), Y (s) = (1) g(~t + L — 1)u(t).Then, based on (4), (6), antft*u(t)} =
X(s)H(s), and k!/s*+! a straightforward algebraic manipulation completes the proof

- P(s,m,d) . Zzmd ) — o _ P(s,m,d)
X(s)= e Xp(z)= m Xow(s) =L{g(t+ L — L)u(t)} —7n!sm+‘P( )
:— 1) [ P(s,m,d)H(s Xewn(s) = (=1)"L{g(— — 1) = 175 M. 4,
HD(Z) :HOID(Z) = (4 ~nzf)d Z{ (5/”‘1 mJ)rl (5) } (4) YL“D(S) ( 1) L{g( t+1L 1)u(t)} mlsm+l
: mes _Qs,m, L)
T omlsmtl T 8)

Moreover, the polynomial form af(¢) makes the calculation of (s)
straightforward, thus providing the coefficients of the polynomials O



2434 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 10, OCTOBER 2001

Next, letH (s) be a transfer function with the denominaters™* + m = na generates digital filter of exactly the same order as the
-+ + a, , and poless,. According to Fig. 2(b), the general time-in-analog prototype
variant synthesis applied to the EWD imposes the initial conditions
y(t) =0,t =0,1, ..., na — 1. Therefore, the expression bf(s) in IIl. PERFORMANCE EVALUATION
f:i)r:;g:lfé?xfefféoc;afemfeonnZ?é?isyv—ffé'jia;f(‘;;”j“t _The CID and A-EWD will be evaluated in terms of the digi-
X (s)H(s)+Y.i(s).Infacty.:(¢) is alinear combination of the modes'ZiNg €1Tor expressed in decibelsp (w) = 20 K’glqu(]w) B
of H(s), and its coefficients are to be calculated as to satisfy the abolfe (¢ “)): 0 < w < wp = @, whereHp (') = Hp(2)]._ e
initial conditions. The design formula (1) is implemented by using (8§ the frequency response of the designed digital filter, apds the
and applying the operatd# to both components df (). This gives the  folding frequency (i.e., half the sampling frequency).

following design equations, which are also illustrated in the Appendix; First of all, a byproduct of Sections II-C and D is the derivation of
H¢ (jw) defined as the Fourier transform of the unit impulse response

Z{X(s)H(s)} = 2 { Q(s,m, L)H(S)} of S, which is shown in Fig. 1. Thus, assumiff(s) = 1 and using
. mlgm+l the fact that the rational terms infound in (4) and (9) implement
N Bos™ AT b a su.mmz?tlons of weighted time shifts, the following expressions are
=z : obtained:
s (ags™a + oot dn )
i . _ JTw —jwym+1 p(J""‘)
A 2(Bor™ T 4 By ) He(jw) =™ (1 —e™7¥) G
T (- — m—+1 ~n - , X
(2= DmF{aozma + -+ an,) 8) p(jw) = P(jw, m,d), t=d+1,forCID
p(jw) =Q(jw, m, L), 7= L, for A-EWD.
Hp(z) =Hewp(z) (10)
_ (= ! I ) . ZIV (o
=i B HE)  Z2{Ya(s)]] In particular, form = 1 andd = 0, either expression offc(jw)
(= 1)+ will give the well-known frequency response of the linear interpo-
e lator (see, e.g., elther [2, Sec. 8.2] or [4, S_ec._8.2]). Typlcal plots
i for 20 log, (|Hc(jw)|) and the corresponding interpolation error
2(Boz" AT 4 o B agm) Er(w) = 201log,,(|]1 — He(jw)|) are shown in Figs. 4 and 5. In
(z = 1)t apz"a 4+ -+ an ) addition, by applying the relationships (7) of Proposition 2 to (10), an
ez AT e y) important result is obtained in the form of Proposition 4.
QoA F e+ ap Proposition 4: If the EWD output interval < t < n 4 is centered

(9b) within the input interval—-(m — L) < t < L, thenHeop, (jw) =
H¢ . (Jw), wherex denotes the conjugate. As a consequence, the

. _ m+1 éﬁm«kl 7 .m . : R
(z-1) =z +diz" A din magnitude responsg®l~(jw)|, as well as the deviations from the

c1 =05 unity gain|l — He(jw)|, are identical for the CID and A-EWD in-
k-1 terpolators whem. = n 4 4+ 2d andL = m — d. Note that this always
{Ck = —fBr-1 - Z Chmndn, k=2, ..., 'ILA} holds for causal interpolation (i.ef, = 0), which corresponds to an

n=l1 A-EWD computed withn = L = n,.

(9¢) The strong distortional effect of the ClBvidenced by the plots of

. N . . He(jw) shown in Figs. 4 and 5, is a direct consequence of (4) and
A ly, th Y.i(s f I I - L - o \
pparently, the expressiafi{Y=(s)} is a ratio of two polynomials (10). Specifically, for any digital filterZ ,, (e’*) is a periodic function

of same degree 4; its poles are:, = ¢*»T, and the numerator co- . ; . . .
efficientsc, are chosen such thaim {="4~'Z{Y(s)}} = 0, thus Zigrxtslggeansod% = 27 and, when obtained with the CID, it can be

7 —oo
satisfying the initial conditions. This is equivalent to the recursive equa-

tions above, which yield the coefficients such that the: 4 leading Hp(e') = Ho(jw)H(jw), —m<w<m (11)
terms of the numerator dfrwn(z) in (9) are canceled. At the same '
time, the factorgz — 1)™ " are canceled altogether. under the assumption of negligible aliasing. Equation (11) clearly

It is worth noting the excellent accuracy of the numerical calculahows that any interpolation device that is cascaded with the analog
tion of Z{X (s)H (s)}, which stems from the fact that, according tgorototype will irreversibly distort the frequency response. This
a good design practice] (s) is usually already defined in factoredmultiplicative distortion appears strictly additive in the decibel plots
form. Thus, knowing the poles dff (s), the method of residues of- shown in Figs. 6-8 (except for the intervabw; < w < w; affected
fers closed-form expressions for the accurate computation of all partigi some aliasing). Indeed, the distorted magnitude response of a
fraction expansion coefficients, including those of the multiple pole &iID filter designed withm = 10, represented by the thin solid line
s = 0. This approach give# ,,(z) directly in a form suitable for fi- in Fig. 6, is the sum of the dashed line in Fig. 6 and the thin solid
nite-word arithmetic implementation, corresponding to cascade or phine in Fig. 4, that is|Hp (¢’ )|ap = |H(jw)|ap + |He (jw)|as.
allel realizations. At the same time, the obvious pole-zero cancellatibikewise, in Fig. 7, the corresponding digitizing erréip (w) =
involving the factorgz — 1)™ %! is dealt with during this easy-to-pro- 20 log,,(|H(jw) — Hp(e’*)|) represented by the thin solid line
gram algebraic process. The algebraic analysis of (9) yields the fobincides with the dash-dotted line, which is the sum of the dashed
lowing. line in Fig. 6 and the thin solid line in Fig. 5, that i€p(w) =

Proposition 3: The causal implementation of the EWD transfefH (jw) — Ho(jw)H (jw)|ag = |H(jw)|as + |1 — He(jw)las.
function is of ordernp = m > na 4+ d, with ns poles re- By contrast, the EWD example of Tables A-Il and A-IIl in the Ap-
lated to the poless,, of the analog prototype by the expressiorpendix is shown in Figs. 6—8 to be dramatically more accurate and free
zn =T n =1, 2,...,n4, whereas the remaining poles, if any,of the distortional effect of (11), in spite of Proposition 4. For example,
are placed at = 0. In particular, the causal design with= 0 and the large deviations of the plots in Fig. 5inthe regiohv; < w < wy
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25 T T v T T v T r T v T v T T T T M T
0
20}
15} causal design: d=0 -10t
) @ CID: m=10, d=0
S 10t ’
= 2 20} ;
[
o 5} ©
2 S a0l .
- =
=) 0 e e ~—
on e
‘2" St 80 -40 | A-EWD: m=10, d=0 :
-]
10} b
50}
-15}1
analog prototype "\,
-20 . . N . N . , . . '60 n 1 n 2 2 2 1 1 i
0O 10 20 30 40 50 60 70 80 9 100 0 10 20 30 40 5 60 70 8 90 100
Frequency [%o,] Frequency [%o ]
: ; (iw : R P Fig. 6. Magnitude responses of digital equivalents of a wideband lowpass
Egil:(.)mig/llzgor}ltéjg;:ggcgl);ogtf;?]éni%rpolatorSc i Fig. 1 built with Butterworth filter of passband [0, 1] and order 10;( = 2). Thin solid
R ' line: CID filter of ordernp, = 19. Thick solid line A-EWD filter of order
30 np = 10. lllustration of the distortional effect of the CID methdgioth filters
j j ’ ) j ) .6/’“ ) — — are designed with the same interpolator of degree= 10 in Figs. 4 and 5,
5t yet only the CID log-magnitude plot in decibels is additively distorted with the
— large deviations of the plot in Fig. 5 in the regiorifw, < w < w;.
8o 00 &
k=l | 0 v T T T T T T
g -15 CID: m=10, n =19
2 -30F 201 CID: m=3, n, = 12, 1
& b7
o Pg:*‘o 40
1<}
& st o7 0}
=1 S —
50 . , ' 2 80
= ool AN Y | TEWD: m=14,d=0 ~ 100l
A S oy ©,=0.086, n. =0, n, =7 =
-105} I Y a °
| =-120
-120 [ o " L " 1 L L m Ve \ |
10 20 30 40 50 60 70 8 9 100 140k N ! ‘ :
Frequency [%®,] ; ’/ / 'T-BWD: m=14, n_ =14
: - ‘ . - O TOE NCA Y 1 0,=0086, 0,20, 0, =7
Fig. 5. Deviation ofH ~(jw) from the (ideal) unity gain for a few algebraic 180 & ) | 1. . ot .
and trigonometric interpolatorsE; (w) = 20 log,,(|]1 — He(jw)|). This -
figure supports the use of the noncausal A-EWD (e.g., Wite: 2) and the 0 10 20 13:0 40 5‘? 6[07 0)70] 80 90 100
more computationally expensive T-EWD (the T-EWD parametgtsn,, , and requency 0D¢

n; were defined in Algorithm 1 of [7]).
Fig. 7. Magnitude of digitizing error€p(w) = 20 log,o(|H(jw) —

. . . . A D(e+)|) corresponding to various causal digital filter implementations
do not yield additive alterations in the EWD plots shown in Figs. 6 arg tige V\Bi'czeband I?)wpasgs; filter in Fig. Gllustragtlion of the gistortional
7. Indeed, while Proposition 4 makes both the CID and A-EWD hawgfect of the CID methodrhe errorEp(w) of the CID filter designed with
the same magnitude of the corresponding expression (11), the latter= 10, which is represented by thihin solid ling coincides with the
does not represent the frequency response of the A-EWD filter dueBpression2o log, (| (jw) — He (jw)H(jew)]), which is represented by
- S . . . the dash-dotted line.

the additional terms containing the coefficientsin (9). This some-
what surprising property of the EWD interpolators is due to what may
be called a symbiotic composition of the interpolation and analog-figraphical illustration. The key to the entire discussion is the property
tering operators. In addition, considering the causal design{i-e.)), of the interpolation at equally spaced points, which yields a relatively
it is obvious that although EWD requires > na + d, it suffices to accurate central interval but produces large errors along the end seg-
choosen = n4 for the order ofH 5 (z) to remain exactly:p = na  ments [8]. Thus, the poor behavior of CID filters can be explained
(i.e., equal to the number of imposed initial conditions). This salieily the fact that the current(k + 1) is calculated from the response
feature of the above symbiosis, which is exemplified in Fig. 7 with thg(#) to the highly inaccurate end segment of the interpolation (i.e.,
A-EWD digitizing error, indeed suggests a “blending” of the interpo—1 < t < 0 in Fig. 3). At the same time, the EWD calculates each
lator S¢: and the analog prototyp# (s), as opposed to the CID wherevaluey(k + 1) from the responsg(t) to the entire interpolated input
the cascadefi- increases the order #fp(z)tonp =na+m—1. xc(t) on—10 < ¢ < 0. Hence, most of the energy of:(¢) corre-

The above properties, which are typical of the CID and EWD, caponds to the accurate central parB(< ¢ < —2) whereas, usually,
be given a simple qualitative explanation by using Fig. 3 and Tablethe recent values of the input have little effect on the output sample
where a large value ofi was choseni = 10) for the sake of a clear y(k + 1). This reasoning also explains why noncausal EWD designs
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TABLE I
COEFFICIENTS OF THEA-EWD EQUATIONS (9) FOR THEFILTER IN FIG. 8

Coefficients of the Coefficients of the Causal A-EWD
—_ Intermediate Digital Filter
'E Numerator Denominator Numerator
-
° 218 |0
e 2| B | 0.0025520215
2| B | -0.0129490536
2| B 0.0365145364 a, 1. 0.010238537
] 2| B, 0.0549197859 a, | -2.767696115 0.0815736775
140 | . . . ] . . . . z | B | -0.0693503881 a, 2.558638882 | -0.08286628
0O 10 20 30 4 50 60 70 80 90 100 1 Bs | -0.0108254181 a; | -0.790081283 { -0.0080844505

Frequency [%0,]

Fig. 8. Magnitude of digitizing errors faf (s) = (20s +2)/[(s + 1)(s* + filters (see the example in Fig. 8, which illustrates the performance of

254 2)],w,; = 40. The same interpolator{ = 3) produces the CID filters of P ; :
ordem . — 5 and the causal A-EWD of order,, — 3. Note that the noncausal a few digital equivalents of the narrowband lowpass filter of [1, Eq.

design withd = 1 makes the A-EWD error decrease more substantially thd@6)]). Moreover, unlike th_e CID equivalents, Who§e orders e)_<ceed
the CID error. the ordem 4 of the analog filter by(m — 1), EWD designs done with

m = n4 preserve the order 4.
Third, the analysis of Section Il underlined the importance of the
like 5 and 6 in Table | increase the accuracy even more dramaticaliyncausal design. Indeed, it is usually enough to chdesd , ord =
than their CID counterparts (see Figs. 5 and 8). Moreover, the secendo dramatically reduce the digitizing error. The inherent additional
design 3 of Table I,which has been done with = 8 andm = 10, 4-step delay (which is necessary for the real-time implementations of
reduces the digitizing error by discarding the erroneous left-end intgfie resulting filters) is fully acceptable in most applications, with the
polation segments (e.g., see the T-EWD plot in Fig. 7, with= 10  possible exception of those cases when the digital filters are placed in
andm = 14). Finally, the analysis of the better approach—the T-EWDQeedback loops.
which is based on frequency selective interpolators [6], [7]—is beyondFinally, while the main focus was on the A-EWD in order to provide
the scope of this paper. the same basis for the comparison with the CID, it is worth mentioning
that the advantages of frequency-selective interpolators [6], [7], which
IV. CONCLUSIONS are typical of the T-EWD, make the T-EWD the method of choice.

Nevertheless, the A-EWD is a convenient alternative for the design of

A unified approach was developed for the interpolation based desigy) 5 jow-order lowpass filters in environments characterized by sig-
of digital filters. Original closed- form design formulas that were suitsit ot aliasing.

able for a rigorous frequency domain analysis, were derived for two
conceptually opposed options. Specifically, (4) and (9) were derived
for the CID and EWD, respectively, and were given general forms that
encompass both causal and noncausal designs. Moreover, it was shown
that the algorithm proposed in [1] as a new digitizing method is a cas-The implementation of the A-EWD equations (9) is illustrated
cade-type extension of the linear interpolation design, and in facthiere for the transfer function used in Fig. B(s) = (20s + 2)/
addresses only theausalCID. Conceptual arguments, as well as d(s+1)(s* +2s+2)]. A causal three-segment polynomial interpolator
quantitative analysis, supported the conclusion that this extensiorofslegreem = 3 yields both the CID filter of orden, = 5 and the
less accurate than the other existent extensions of the linear interp@leé=WD filter of ordernp, = na = 3 designed withl = 3 andd = 0.
tion design. The denormalization of the design equations required by the actual
First of all, in the case of the causal design=£ 0), (4) yields the sampling period” = 7/40 can be incorporated into the polynomials
same result as the state-space algorithm of [1]. In particular, the desi@fs, m, d) and Q(s,m, L) of (4), (6), and (9), which, consistently
done withm = 1, d = 0, and (4) gives the transfer function obtainedvith (7), becomé)(s,3,3) = P(—s,3,0) = (2125 —6Ts+6)/T°.
with the linear interpolation method [2, Sec. 8.2 and 8.4] or [3, Sethe first step of the EWD design generates the coefficiénts. ., 3s
4.4.2]. This can be illustrated with the transfer functiofs) = 4/(s+ andag, ..., as of the intermediate transfer functioh{ X (s)H (s)}
4) used in [1] to prove that the proposed state-space algorithm was imo(9), that is, thez-transform of the inverse Laplace transform of
the same as the zero-order hold method. Indeed, the transfer functigis, m, L) H (s)/(m!s™T"). The coefficients are shown in Table II.
Fi(z) = (0.14182+0.1278)/(=—0.7304) (i.e., [1, Eq. (45)]) obtained The recursive equations that give the coefficients of (9) are
for the sampling period” = 7 /40 is preciselyHp(z) given by the ¢; = —f8¢,c2 = —f1 + 4c1, andes = — 32 + 4c2 — 6¢1. According
linear interpolation method, as well as (4) above with= 1, d = 0, to Section II-D, these equations calculate the coefficientssuch
and appropriate time-domain denormalization. that then 4 leading terms of the numerator &fxwn(z) in (9) are
Second, the argument was made in this correspondence thatdanceled, thus satisfying the EWD initial conditions. It can be proven
EWD, which was previously developed in [5]-[7] and briefly analyzethat the relationd, = 0 always holds; therefore, the coefficients
in Sections Il and Ill, circumvents the drawbacks of the cascatbecome:; = 0, c2 = —0.002552021 5, andcs = 0.002 740967 6.
approach. Indeed, in all the examples shown in Figs. 6-8, the A-EViIbreover, there will be total cancellation of the factges— 1)™**
exhibits better performance, even in the case of narrowband lowpas$9), and="*'~" = = since the minimum-order causal A-EWD

APPENDIX
NUMERICAL EXAMPLES
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TABLE 1II Reply to Comments on “Further Improvements in
BUTTERWORTHANALOG FILTER OF ORDER 10IN FIGS. 6 AND 7 Digitizing Continuous-Time Filters”

Factors of the Denominator Alan M. Schneider and Chunxi Wan

2

s s 1

Dr. Braileanu compares his A-EWD design technique with our WS
0.3128689 1 . . . .
0.907981 1 technique (which he calls CID) and cites the relative errors of the two
1414214 L tephnique; as a function of frequengy. Thg error plot he presents in his
1782013 1 Fig. 8, which we have redrawn as Fig. 1, illustrates that the two tech-
1.975377 1 niques exhibit similar small errors in the filter passband but differ in
the filter stopband. The magnitude of the errors for both techniques
is on the order ofl0{=?) to 10(=7). In many practical applications,

TABLE IV the energy content in the stopband of a system contributes an insignif-
A-EWD DIGITAL FILTER OF ORDER 10 DESIGNED FROM THE FILTER icant level to the time signal passing through the filter. Small errors
IN TABLE 11l in insignificant contributions represent third- and fourth-order effects
and are of little practical importance. In reality, analog filters built with
Zeros of the A-EWD Filter Poles of the A-EWD Filter real components have a tolerance on the order of one part in 100, and
(factor: 0.226329246¢-05) the spectral errors resulting from component tolerance spread far out-
weigh the simulation differences reported by Dr. Braileanu. Further,
Real Part Imaginary Part Real Part  Imaginary Part comparing the size of low-level errors in the frequency-domain descrip-
-6.73605469 tion of the different filter design methods begs the real question: What
-1.63016176 effect do the errors cause in the fidelity of the time-domain signals? In
-0.58451141 0.0151248676  +0.78198973 reality, the time-domain response of different filter implementations is
-0.26054507 0.0835006202  +0.482943981 remarkably tolerant of small changes in the filter's frequency response.

-9.44924093 +76.7326155 0.146224024  +0.295078168
-0.0631632673  +£0.044451201 | 0.186582771  +0.16139036
0.0172102122  £0.023798308 | 0.205572464  +0.051556184

This tolerance is the result of the temporal averaging inherent in the
convolution process.

Fig. 1 is a replot of two curves of Dr. Braileanu’s Fig. 8: the CID
nd = 5,d = 0 curve (our WS design) and the A-EWDI = 3,d =0
curve. The only change is the use of the logarithmic scale for frequency
for the purpose of placing the passband into broader perspective. The
ﬁgndwidth of the prototype analog filter for this plot is 5 rad/s. The
sampling rate is 80 rad/s, which is 16 times the bandwidth. This plot
eshows that the error of either filter in the passband ranges s
1tr 107 The error in the stopband ranges frafi—2) to 10¢=%).

implies L = m = 3. Thus, the transfer function of the digital
filter will have the numerator and the denominator of same degr
np = m = 3. The coefficients of the numerator are shown in Table |
together with the coefficientsy, ..., «3 of the denominator.

Next, the transfer function of the analog Butterworth filter of ord

10 used in the examples shown in Figs. 6 and 7 is considered. ) . U
numerator is 1, and the denominator is given in factored form irﬁ'he tenth-order Butterworth filter Dr. Braileanu uses in his compar-

Table I1l. The design equations (9) yield a minimum-order A-EWDON (Fig. 6) was designed with a small ratio of sampling frequency to

digital equivalent of this filter, which is represented in Table IV irpaanidt_h (41 to be Ipre_cis.e), orto pu.t it another way, the §amp|ing
pole-zero form. rate is twice the Nyquist limit. In many signal processing applications,

it is indeed desirable to operate close to the Nyquist limit, and this is

possible because the signal is preconditioned while in its analog form
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