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Correspondence________________________________________________________________________

Comments on “Further Improvements in Digitizing
Continuous-Time Filters”

Grigore Braileanu

Abstract—This correspondence points out that an algorithm proposed
as a new digitizing method is, in fact, an extension of the linear interpo-
lation design. Unlike previously published extensions, which incorporate
the interpolation step into the - to -domain mapping step, this algorithm
cascades the interpolator and the analog filter. Original design formulas
derived for a rigorous comparison support the assertion that the above al-
gorithm yields less accurate results than the other interpolation designs.

Index Terms—Filter design and structures, sampling and interpolation,
signal processing theory and methods.

I. INTRODUCTION

A state-space algorithm, called “weighted sample” is presented in [1]
as a new digitizing method. This algorithm implements a multiple-seg-
ment interpolator in a cascade defined in [1, Fig. 2], which is repro-
duced in Fig. 1 for convenience. Fig. 1 is a typical setup used, for ex-
ample, by the step-invariance method (whereSC is a zero-order-hold
element) and the linear interpolation method (whereSC is a two-point
linear interpolator) [2]–[4]. The present correspondence points out that
the above algorithm is, in fact, an immediate extension of the linear in-
terpolation method from a two-point to an (m + 1)-point interpolator
SC built with algebraic polynomials and cascaded with the analog filter
H(s). Next, it is shown that other digitizing options, better than the im-
mediate extension, are available when the lengthm of the interpolation
interval exceeds one. The most appealing of these options, which were
previously proposed and analyzed in [5]–[7], are

i) the composition of the interpolation and filtering operators into
just one operator by incorporating the interpolation step into
thes- to z-domain mapping step (as opposed to the sequential
approach [1], which cascades the interpolator and the filter);

ii) the causal and noncausal designs with optional additional poles
at z = 0;

iii) the interpolation with trigonometric polynomials (as opposed to
algebraic polynomials).

First of all, the algorithm proposed in [1] uses an algebraic polyno-
mial interpolation to construct the outputxC(t) of them-segment in-
terpolator along the current sampling periodkT � t � (k + 1)T and
applies this output sequentially to the input of the analog filterH(s).
Then, the outputyf(k + 1)Tg of the designed digital filter is derived
from the response of the analog filter toxC(t) with an initial state at
t = kT equal to the state reached by the analog filter at the end of the
previous computation done on(k � 1)T � t � kT . Therefore, the re-
sulting transfer functionHD(z) is given by the impulse-response equiv-
alent of the cascadefSC ; H(s)g, that is, thez transform of the sampled
responsehD(kT ) of fSC; H(s)g to the input impulsed(kT ). For this
reason, the “weighted sample” algorithm [1] will be referred to in the
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Fig. 1. Block diagram of the cascade-type interpolation design (CID).

following as thecausal cascaded interpolation design(CCID), where
the causality ensues from the real-time type of calculation used in [1].

The above mentioned alternative options i)–iii) stem from two re-
sults of the theory of interpolation at equally spaced points [8]. Specif-
ically, the inherent oscillations of the interpolation error are usually
exacerbated along the end segments of the interpolation interval, and
at the same time, the interpolation with trigonometric polynomials en-
joys much better numerical properties [8]; therefore, it should be pre-
ferred to the interpolation with algebraic polynomials [5]. Accordingly,
trigonometric polynomials were used in [5]–[7] to calculate each new
valueyf(k + 1)Tg from the response of the analog prototypeH(s)
of ordernA determined along anextended time segment(k � nA +
1)T � t � (k+1)T with a particular set of initial conditions. Specif-
ically, along this time interval, the functiony(t), which is calculated at
t = (k�nA+1)T; . . . ; kT , must take on precisely the lastnA sam-
pled values previously computed. Thus, this design, which is referred
to as theextended window design(EWD), provides a natural match for
the initial conditions of the analog and digital filters and incorporates
the interpolation step into thes- toz-domain mapping step. Apparently,
this makes the approximationy(t) benefit from the increased accuracy
of the central part of them-segment interpolation interval that, usually,
contains most of the signal energy [8]. This salient feature of the EWD
is in contrast to the CCID, which uses only the right-end segment of
the interpolation interval to calculate the current output of the digital
equivalent. Finally, the problem created by the inaccurate end segments
was addressed in [5]–[7] by the use of noncausal interpolators, which
discard the end segments in the final stage of the design.

The main contribution of the present correspondence is a rigorous
performance analysis of the existent digitizing methods based on inter-
polation with algebraic polynomials applied to causal, as well as non-
causal, digital filter design. To this end, the paper addresses the fact that
the CCID considered only causal algebraic interpolators, whereas the
EWD has been presented in [5]–[7] under a very general and numer-
ically stable algorithmic form that is more suitable for trigonometric
interpolators. Thus, based on a unified approach, original closed-form
design expressions that are suitable for the frequency domain analysis
are derived below. As these expressions encompass both the causal and
noncausal forms of design, the generic notations CID and EWD will be
used hereafter. Finally, it is worth mentioning that the entire analysis is
restricted to the interpolation with algebraic polynomials in order to i)
provide the same basis for the performance evaluation of the CID and
EWD and ii) point out that the latter yields more accurate digital equiv-
alents to analog filters, even if algebraic polynomials are used instead
of the trigonometric polynomials.

This correspondence is organized as follows. The general closed-
form expressions of the CID and EWD transfer functions designed with
interpolators that use algebraic polynomials are given in Section II. The
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performance analysis is done in Section III by analyzing the frequency
responses of the analog filters and their digital equivalents. Concluding
remarks are provided in Section IV.

II. DERIVATION OF THE CID AND EWD TRANSFERFUNCTIONS FOR

INTERPOLATION WITH ALGEBRAIC POLYNOMIALS

The following design of digital filters from analog prototypes is
based on Fig. 1. For convenience, the continuous-time variablet will
be normalized to the sampling periodT ; therefore, the sampling times
will be designated byt = k, wherek takes on integrals values. The
continuous-time signalsx(t), xC(t), andy(t) will be defined as in
Fig. 1, and the input and output of the designed digital filterHD(z)
will be denoted byxD(k) andyD(k), respectively. The orders of the
analog and digital filters will benA andnD . Moreover, the uppercase
notations of functions of the variabless and z will, respectively,
represent the Laplace andz-transforms of the corresponding signals
denoted with lowercase letters.

A. General Time–Domain Invariant Synthesis

Given an analog filterH(s), the traditional general time-domain in-
variant synthesis [4] generates a digital equivalentHD(z) such that
equivalent inputsx(t) andxD(k) = x(t)jt=k yield equivalent outputs
y(t) andyD(k) = y(t)jt=k along the entire time axis and under the
conditions of initial rest[2, Sec. 3.5]. Thus, according to [4, Sec. 9-4],
this time-domain equivalence implies the identity of thez-transforms
YD(z)

�
=HD(z)XD(z) andZfY (s)g. The latter expression uses the

notation of [3, Sec. 2.4.1], whereZfY (s)g
�
= Zf[L�1[Y (s)]]jt=kg is

thez-transform of the samples ofy(t). With this notation, the above
identity gives the designed transfer function

HD(z) =
1

XD(z)
ZfY (s)g: (1)

The crux of the design is the selection of the test signalx(t) together
with the method for calculating the corresponding responsey(t) of
the analog prototypeH(s). Particular selections may produce the
traditional impulse- and step-invariance methods, the linear interpo-
lation method, or the two possible extensions of the latter—the CID
and EWD—as shown below. At the same time, in order to satisfy the
conditions of initial rest, the test signal applied to the interpolatorSC
and the digital filter must be zero prior to some initial timet0. Finally,
the interpolation setup in Fig. 1 implies the identityxC(t) = x(t) for
t � t0. Therefore, in the context of time-invariant synthesis, the class
of admissible test signalsx(t) corresponding to an (m + 1)-point
interpolation will be the set of polynomials—algebraic or trigono-
metric—whose zeros arem adjacent integers up to and including
t = t0. Restricting this correspondence only to algebraic polynomials,
all the admissible test signals that satisfy the above requirements will
be proportional to time-shifted variants of the generic polynomial

g(t) =
1

m!
t(t� 1)(t� 3) . . . (t�m+ 1) (2)

whose polynomial form leads to simple Laplace andz-transforms. For
example

G(s)
�
= Lfg(t)u(t)g =

Pm(s)

m!sm+1

GD(z)
�
= Zf[g(t)u(t)]jt=kg =

z

(z � 1)m+1
(3)

whereu(t) is the unit step, andPm(s) is a polynomial ins given by a
straightforward calculation.

Fig. 2. Definition of the CID and EWD in terms of the test signals for a
noncausal interpolation withm = 7, d = 2, n = 3 (the causal design
is done withd = 0) (a) CurrentCID output y(1) is computed from the
zero-state responseof the analog filter to the segmentx(t), 0 � t � 1 of the
(m + 1)-point interpolation. (b) CurrentEWD output y(n ) is computed
from the response of the analog filter to the segmentx(t), 0 � t � n with
the auxiliary conditionsy(0) = y(1) = � � � = y(n � 1) = 0.

B. Definition of the CID and EWD Methods

Fig. 2(a) and (b) has the dual purpose of presenting the CID and
EWD first and then defining the admissible test signalsx(t) necessary
for the time-domain invariant synthesis based on the setup in Fig. 1.

In this section, Fig. 2 is used to present the CID and EWD recursive
generation of the output; therefore,t0 is the sampling time of the pre-
viously computed output, whereas (t0 + 1) is the current time. As the
CID and EWD are variants of just one method—the interpolation de-
sign—they compute the next output sample in the same manner but
with different initial conditions. Specifically, they compute the next
output sample as the value att = t0 + 1 of the response of the analog
filter H(s) to the same signalxC(t) built bySC from the last(m+1)
input samples on a time interval ending witht = t0 + d+ 1, that is,d
sampling periods after the current time. Obviously,d = 0 corresponds
to a causal design, whereas any positive integerd produces a digital
filter whose causal implementation requires an additional output delay
d. Theconceptual differencebetween the CID and EWD stems from
the way the initial conditions of the analog filter are defined. Thus, the
CID takes the initial state of the filterH(s) att0 equal to the final state
during the calculation performed along the previous sampling period
t0�1 � t � t0. Hence, only one segment of the interpolation interval
is used (i.e.,t0 � t � t0 + 1). By contrast, the EWD calculates each
new valuey(t0 + 1) from the response of the filterH(s) determined
along an extended time segmentt0 � nA + 1 � t � t0 + 1, whereas
the functiony(t) takes on precisely the lastnA output values calculated
at t = t0 � nA + 1; . . . ; t0 � 1; t0. The numerous options offered by
the multiple-segment interpolation design are illustrated in Table I with
reference to Fig. 3. At the same time, the main EWD features will be
analyzed in Section III, together with the drawbacks of the CID, which
are direct consequences of the single-segment sequential approach.

The following derivations of the CID and EWD transfer functions
are based on the admissible test signalsx(t) that are necessary for the
time-domain invariant synthesis applied to the setup in Fig. 1. To this
end, according to Section II-A above,t0 in Fig. 2 is viewed now as the
time instant when the conditions of initial rest are applied. Apparently,
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TABLE I
SIX VARIANTS OF THE DESIGN BASED ON (m+ 1)-POINT INTERPOLATORS

ILLUSTRATED IN FIG. 3 FORm = 10

Fig. 3. Typical(m + 1)-point interpolation of the input signal(m = 10).
Dashed line: x(t)—the original input.Thin solid line: x (t)—the entire
interpolated signal.Thick solid line: the central part�8 � t � �2 of the
interpolated signal considered to be “current input” by a noncausal design with
d = 2. Small circles: the(m+ 1) sampled values of the original input.

t0 = 0 for the CID, andt0 = nA � 1 for the EWD, whereas the time
origin shown in Fig. 2 is chosen such that all the signals considered in
the remainder are zero along the negative side of the time axis.

C. Derivation of the CID Transfer Function

In the spirit of the general time-invariant synthesis, the CID transfer
functionHD(z) = HCID(z) is obtained by expressing (1) in terms
of the signalsx(t) andy(t) defined in Fig. 2(a). Accordingly, (1)–(3)
yield the following expressions:x(t) = g(t+m�d�1)u(t); Y (s) =
X(s)H(s), and

X(s) =
P (s;m; d)

m!sm+1
; XD(z) =

zm�d

(z � 1)m+1

HD(z) =HCID(z) =
(z � 1)m+1

zm�d
Z

P (s;m; d)H(s)

m!sm+1
: (4)

Moreover, the polynomial form ofx(t) makes the calculation ofX(s)
straightforward, thus providing the coefficients of the polynomials

P (s;m; d). For the causal design (i.e.,d = 0), the following relation-
ships hold:

x(t) =
1

m!
t(t+ 1)(t+ 2) . . . (t+m� 1)u(t)

= (�1)mg(�t)u(t)

P (s;m; 0) =Pm(�s) (5)

where the polynomialsPm(s) have been defined in (3).
It is worth noting that the same expression (4) ofHCID(z), which

was derived here as the generalized time-domain invariant equivalent
of H(s) alone, can be also derived as theimpulse-response invariant
equivalent of the cascadefSC ; H(s)g.

Finally, the CID characterization formulated in Proposition 1 below
can be proven by considering (4), together with the total cancellation
of the factors(z � 1)(m+1) in HCID(z).

Proposition 1: The causal implementation of the CID transfer func-
tion increases the order of the digital filtertonD = nA+m� 1, with
m � 1 poles atz = 0, and the nonzero poleszn = es T , where the
valuessn, n = 1; 2; . . . ; nA are the poles of the analog prototype.

D. Derivation of the A-EWD Transfer Function (Interpolation With
Algebraic Polynomials)

While the CID is restricted to the interpolation with algebraic poly-
nomials, two EWD forms corresponding to the interpolation with alge-
braic and trigonometric polynomials are available. They will be referred
to as the A-EWD and T-EWD methods. In view of the facts that the
T-EWD method was extensively analyzed in [7] and the CID was pro-
posed in algebraic form, this correspondence is restricted to the interpo-
lation with algebraic polynomials in order to provide the same basis for
the performance evaluation of the CID and EWD. Thus, an expression
similar to (4) is derived below for the particular A-EWD transfer func-
tions designed with causal or noncausal algebraic interpolators.

Equation (1) is to be used here again for the particular forms ofx(t)
andy(t) corresponding to Fig. 2(b). Thus,x(t) = g(t+m�L)u(t),
whereL

�
= nA + d. In addition,X(s) andXD(z) can be easily cal-

culated as in (4) to give

X(s) =
Q(s;m; L)

m!sm+1
; L

�
= nA + d; XD(z) =

zm+1�L

(z � 1)m+1
(6)

whereQ(s;m; L) are polynomials ins and satisfy the following
Proposition 2.

Proposition 2: If the EWD output interval0 � t � nA is centered
within the input interval�(m�L) � t � L as in Fig. 2(b) (i.e., always
in the case of causal interpolation withm = nA), then the following
relations hold:

Q(s;m; L) =P (�s; m; d); L
�
= A+ d = m� d

m = nA + 2d: (7)

Proof: ForL = m � d, the particular form of the generic poly-
nomial g(t) defined in (2) generates the CID and EWD test signals
xCID(t) = g(t + L� 1)u(t) andxEWD(t) = g(t +m � L)u(t) =
(�1)mg(�t+ L� 1)u(t).Then, based on (4), (6), andLftku(t)g =
k!=sk+1, a straightforward algebraic manipulation completes the proof

XCID(s) =Lfg(t+ L� 1)u(t)g=
P (s;m; d)

m!sm+1

XEWD(s) = (�1)mLfg(�t+ L� 1)u(t)g =
P (�s;m; d)

m!sm+1

=
Q(s;m;L)

m!sm+1
: (8)
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Next, letH(s) be a transfer function with the denominatora0 s
n +

� � � + an and polessn. According to Fig. 2(b), the general time-in-
variant synthesis applied to the EWD imposes the initial conditions
y(t) = 0; t = 0; 1; . . . ; nA � 1. Therefore, the expression ofY (s) in
(1) exhibits now a zero-state componentYzs(s) as well as a zero-input
componentYzi(s) and can be written asY (s) = Yzs(s) + Yzi(s) =
X(s)H(s)+Yzi(s). In fact,yzi(t) is a linear combination of the modes
of H(s), and its coefficients are to be calculated as to satisfy the above
initial conditions. The design formula (1) is implemented by using (6)
and applying the operatorZ to both components ofY (s).This gives the
following design equations, which are also illustrated in the Appendix:

ZfX(s)H(s)g =Z
Q(s;m;L)H(s)

m!sm+1

�
=Z

b0s
n +m�1 + � � �+ bn +m�1

sm+1(a0sn + � � �+ an )

�
=

z(�0z
n +m + � � �+ �n +m)

(z � 1)m+1(�0zn + � � �+ �n )

(9a)

HD(z) =HEWD(z)

=
(z � 1)m+1

zm+1�L
[ZfX(s)H(s)g+ ZfYzi(s)g]

=
(z � 1)m+1

zm+1�L

�
z(�0z

n +m + � � �+ �n +m)

(z � 1)m+1(�0zn + � � �+ �n )

+
z(c1z

n �1 + � � �+ cn )

�0zn + � � �+ �n

(9b)

(z � 1)m+1
�
=z

m+1 + d1z
m + � � �+ dm+1

c1 =��0

ck = ��k�1 �

k�1

n=1

ck�ndn; k = 2; . . . ; nA :

(9c)

Apparently, the expressionZfYzi(s)g is a ratio of two polynomials
of same degreenA; its poles arezn = es T , and the numerator co-
efficientscn are chosen such thatlim

Z!1
fzn �1ZfY (s)gg = 0, thus

satisfying the initial conditions. This is equivalent to the recursive equa-
tions above, which yield the coefficientsck such that thenA leading
terms of the numerator ofHEWD(z) in (9) are canceled. At the same
time, the factors(z � 1)m+1 are canceled altogether.

It is worth noting the excellent accuracy of the numerical calcula-
tion of ZfX(s)H(s)g, which stems from the fact that, according to
a good design practice,H(s) is usually already defined in factored
form. Thus, knowing the poles ofH(s), the method of residues of-
fers closed-form expressions for the accurate computation of all partial
fraction expansion coefficients, including those of the multiple pole at
s = 0. This approach givesHD(z) directly in a form suitable for fi-
nite-word arithmetic implementation, corresponding to cascade or par-
allel realizations. At the same time, the obvious pole-zero cancellation
involving the factors(z� 1)m+1 is dealt with during this easy-to-pro-
gram algebraic process. The algebraic analysis of (9) yields the fol-
lowing.

Proposition 3: The causal implementation of the EWD transfer
function is of ordernD = m � nA + d, with nA poles re-
lated to the polessn of the analog prototype by the expression
zn = es T ; n = 1; 2; . . . ; nA, whereas the remaining poles, if any,
are placed atz = 0. In particular, the causal design withd = 0 and

m = nA generates adigital filter of exactly the same order as the
analog prototype.

III. PERFORMANCEEVALUATION

The CID and A-EWD will be evaluated in terms of the digi-
tizing error expressed in decibelsED(!) = 20 log10(jH(j!) �

HD(ej!)j); 0 � ! � !f = �, whereHD(ej!)
�
= HD(z)j

z=e

is the frequency response of the designed digital filter, and!f is the
folding frequency (i.e., half the sampling frequency).

First of all, a byproduct of Sections II-C and D is the derivation of
HC(j!) defined as the Fourier transform of the unit impulse response
of SC , which is shown in Fig. 1. Thus, assumingH(s) = 1 and using
the fact that the rational terms inz found in (4) and (9) implement
a summations of weighted time shifts, the following expressions are
obtained:

HC(j!) = e
j�!(1� e

�j!)m+1
p(j!)

m!(j!)m+1

p(j!) = P (j!; m; d); � = d+ 1, for CID

p(j!) = Q(j!; m; L); � = L; for A-EWD.
(10)

In particular, form = 1 andd = 0, either expression ofHC(j!)
will give the well-known frequency response of the linear interpo-
lator (see, e.g., either [2, Sec. 8.2] or [4, Sec. 8.2]). Typical plots
for 20 log10(jHC(j!)j) and the corresponding interpolation error
EI(!) = 20 log10(j1 � HC(j!)j) are shown in Figs. 4 and 5. In
addition, by applying the relationships (7) of Proposition 2 to (10), an
important result is obtained in the form of Proposition 4.

Proposition 4: If the EWD output interval0 � t � nA is centered
within the input interval�(m � L) � t � L, thenHC (j!) =
H�C (j!), where� denotes the conjugate. As a consequence, the
magnitude responsesjHC(j!)j, as well as the deviations from the
unity gain j1 � HC(j!)j, are identical for the CID and A-EWD in-
terpolators whenm = nA+2d andL = m� d. Note that this always
holds for causal interpolation (i.e.,d = 0), which corresponds to an
A-EWD computed withm = L = nA.

The strong distortional effect of the CID, evidenced by the plots of
HC(j!) shown in Figs. 4 and 5, is a direct consequence of (4) and
(10). Specifically, for any digital filter,HD(ejw) is a periodic function
of ! with period!s = 2� and, when obtained with the CID, it can be
expressed as

HD(ej!) = HC(j!)H(j!); �� < ! < � (11)

under the assumption of negligible aliasing. Equation (11) clearly
shows that any interpolation device that is cascaded with the analog
prototype will irreversibly distort the frequency response. This
multiplicative distortion appears strictly additive in the decibel plots
shown in Figs. 6–8 (except for the interval0:9!f � ! � !f affected
by some aliasing). Indeed, the distorted magnitude response of a
CID filter designed withm = 10, represented by the thin solid line
in Fig. 6, is the sum of the dashed line in Fig. 6 and the thin solid
line in Fig. 4, that is,jHD(ej!)jdB = jH(j!)jdB + jHC(j!)jdB.
Likewise, in Fig. 7, the corresponding digitizing errorED(!) =
20 log10(jH(j!) � HD(ej!)j) represented by the thin solid line
coincides with the dash-dotted line, which is the sum of the dashed
line in Fig. 6 and the thin solid line in Fig. 5, that is,ED(!) =
jH(j!)�HC(j!)H(j!)jdB = jH(j!)jdB + j1�HC(j!)jdB.

By contrast, the EWD example of Tables A-II and A-III in the Ap-
pendix is shown in Figs. 6–8 to be dramatically more accurate and free
of the distortional effect of (11), in spite of Proposition 4. For example,
the large deviations of the plots in Fig. 5 in the region0:7!f � ! � !f
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Fig. 4. Magnitude ofH (j!) for the interpolatorS in Fig. 1 built with
polynomials of degreesm = 1; 3; 6, and 10.

Fig. 5. Deviation ofH (j!) from the (ideal) unity gain for a few algebraic
and trigonometric interpolators:E (!) = 20 log (j1 � H (j!)j). This
figure supports the use of the noncausal A-EWD (e.g., withd = 2) and the
more computationally expensive T-EWD (the T-EWD parameters! ; n ; and
n were defined in Algorithm 1 of [7]).

do not yield additive alterations in the EWD plots shown in Figs. 6 and
7. Indeed, while Proposition 4 makes both the CID and A-EWD have
the same magnitude of the corresponding expression (11), the latter
does not represent the frequency response of the A-EWD filter due to
the additional terms containing the coefficientsck in (9). This some-
what surprising property of the EWD interpolators is due to what may
be called a symbiotic composition of the interpolation and analog-fil-
tering operators. In addition, considering the causal design (i.e.,d = 0),
it is obvious that although EWD requiresm � nA + d, it suffices to
choosem = nA for the order ofHD(z) to remain exactlynD = nA
(i.e., equal to the number of imposed initial conditions). This salient
feature of the above symbiosis, which is exemplified in Fig. 7 with the
A-EWD digitizing error, indeed suggests a “blending” of the interpo-
latorSC and the analog prototypeH(s), as opposed to the CID where
the cascadedSC increases the order ofHD(z) to nD = nA +m� 1.

The above properties, which are typical of the CID and EWD, can
be given a simple qualitative explanation by using Fig. 3 and Table I,
where a large value ofm was chosen (m = 10) for the sake of a clear

Fig. 6. Magnitude responses of digital equivalents of a wideband lowpass
Butterworth filter of passband [0, 1] and order 10 (! = 2). Thin solid
line: CID filter of order n = 19. Thick solid line: A-EWD filter of order
n = 10. Illustration of the distortional effect of the CID method: Both filters
are designed with the same interpolator of degreem = 10 in Figs. 4 and 5,
yet only the CID log-magnitude plot in decibels is additively distorted with the
large deviations of the plot in Fig. 5 in the region0:7! � ! � ! .

Fig. 7. Magnitude of digitizing errorsE (!) = 20 log (jH(j!) �
HD(e )j) corresponding to various causal digital filter implementations
of the wideband lowpass filter in Fig. 6.Illustration of the distortional
effect of the CID method: The errorE (!) of the CID filter designed with
m = 10, which is represented by thethin solid line, coincides with the
expression20 log (jH(j!) � H (j!)H(j!)j), which is represented by
the dash-dotted line.

graphical illustration. The key to the entire discussion is the property
of the interpolation at equally spaced points, which yields a relatively
accurate central interval but produces large errors along the end seg-
ments [8]. Thus, the poor behavior of CID filters can be explained
by the fact that the currenty(k + 1) is calculated from the response
y(t) to the highly inaccurate end segment of the interpolation (i.e.,
�1 � t � 0 in Fig. 3). At the same time, the EWD calculates each
valuey(k + 1) from the responsey(t) to the entire interpolated input
xC(t) on�10 � t � 0. Hence, most of the energy ofxC(t) corre-
sponds to the accurate central part (�8 � t � �2) whereas, usually,
the recent values of the input have little effect on the output sample
y(k + 1). This reasoning also explains why noncausal EWD designs
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Fig. 8. Magnitude of digitizing errors forH(s) = (20s+2)=[(s+1)(s +
2s+2)]; ! = 40. The same interpolator (m = 3) produces the CID filters of
ordern = 5 and the causal A-EWD of ordern = 3. Note that the noncausal
design withd = 1 makes the A-EWD error decrease more substantially than
the CID error.

like 5 and 6 in Table I increase the accuracy even more dramatically
than their CID counterparts (see Figs. 5 and 8). Moreover, the second
design 3 of Table I,which has been done withnA = 8 andm = 10,
reduces the digitizing error by discarding the erroneous left-end inter-
polation segments (e.g., see the T-EWD plot in Fig. 7, withnA = 10
andm = 14). Finally, the analysis of the better approach—the T-EWD,
which is based on frequency selective interpolators [6], [7]—is beyond
the scope of this paper.

IV. CONCLUSIONS

A unified approach was developed for the interpolation based design
of digital filters. Original closed- form design formulas that were suit-
able for a rigorous frequency domain analysis, were derived for two
conceptually opposed options. Specifically, (4) and (9) were derived
for the CID and EWD, respectively, and were given general forms that
encompass both causal and noncausal designs. Moreover, it was shown
that the algorithm proposed in [1] as a new digitizing method is a cas-
cade-type extension of the linear interpolation design, and in fact, it
addresses only thecausalCID. Conceptual arguments, as well as a
quantitative analysis, supported the conclusion that this extension is
less accurate than the other existent extensions of the linear interpola-
tion design.

First of all, in the case of the causal design (d = 0), (4) yields the
same result as the state-space algorithm of [1]. In particular, the design
done withm = 1, d = 0, and (4) gives the transfer function obtained
with the linear interpolation method [2, Sec. 8.2 and 8.4] or [3, Sec.
4.4.2]. This can be illustrated with the transfer functionF (s) = 4=(s+
4) used in [1] to prove that the proposed state-space algorithm was not
the same as the zero-order hold method. Indeed, the transfer function
F1(z) = (0:1418z+0:1278)=(z�0:7304) (i.e., [1, Eq. (45)]) obtained
for the sampling periodT = �=40 is preciselyHD(z) given by the
linear interpolation method, as well as (4) above withm = 1, d = 0,
and appropriate time-domain denormalization.

Second, the argument was made in this correspondence that the
EWD, which was previously developed in [5]–[7] and briefly analyzed
in Sections II and III, circumvents the drawbacks of the cascade
approach. Indeed, in all the examples shown in Figs. 6–8, the A-EWD
exhibits better performance, even in the case of narrowband lowpass

TABLE II
COEFFICIENTS OF THEA-EWD EQUATIONS (9) FOR THEFILTER IN FIG. 8

filters (see the example in Fig. 8, which illustrates the performance of
a few digital equivalents of the narrowband lowpass filter of [1, Eq.
(46)]). Moreover, unlike the CID equivalents, whose orders exceed
the ordernA of the analog filter by(m� 1), EWD designs done with
m = nA preserve the ordernA.

Third, the analysis of Section III underlined the importance of the
noncausal design. Indeed, it is usually enough to choosed = 1, ord =
2, to dramatically reduce the digitizing error. The inherent additional
d-step delay (which is necessary for the real-time implementations of
the resulting filters) is fully acceptable in most applications, with the
possible exception of those cases when the digital filters are placed in
feedback loops.

Finally, while the main focus was on the A-EWD in order to provide
the same basis for the comparison with the CID, it is worth mentioning
that the advantages of frequency-selective interpolators [6], [7], which
are typical of the T-EWD, make the T-EWD the method of choice.
Nevertheless, the A-EWD is a convenient alternative for the design of
causal low-order lowpass filters in environments characterized by sig-
nificant aliasing.

APPENDIX

NUMERICAL EXAMPLES

The implementation of the A-EWD equations (9) is illustrated
here for the transfer function used in Fig. 8,H(s) = (20s + 2)=
[(s+1)(s2+2s+2)]. A causal three-segment polynomial interpolator
of degreem = 3 yields both the CID filter of ordernD = 5 and the
A-EWD filter of ordernD = nA = 3 designed withL = 3 andd = 0.
The denormalization of the design equations required by the actual
sampling periodT = �=40 can be incorporated into the polynomials
P (s;m; d) andQ(s;m; L) of (4), (6), and (9), which, consistently
with (7), becomeQ(s;3; 3) = P (�s; 3; 0) = (2T 2s2�6Ts+6)=T 3.
The first step of the EWD design generates the coefficients�0; . . . ; �6
and�0; . . . ; �3 of the intermediate transfer functionZfX(s)H(s)g
in (9), that is, thez-transform of the inverse Laplace transform of
Q(s;m; L)H(s)=(m!sm+1). The coefficients are shown in Table II.
The recursive equations that give the coefficientsck of (9) are
c1 = ��0; c2 = ��1 + 4c1, andc3 = ��2 + 4c2 � 6c1. According
to Section II-D, these equations calculate the coefficientsck such
that thenA leading terms of the numerator ofHEWD(z) in (9) are
canceled, thus satisfying the EWD initial conditions. It can be proven
that the relation�0 = 0 always holds; therefore, the coefficientsck
becomec1 = 0, c2 = �0:0025520215, andc3 = 0:0027409676.
Moreover, there will be total cancellation of the factors(z � 1)m+1

in (9), andzm+1�L = z since the minimum-order causal A-EWD
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TABLE III
BUTTERWORTHANALOG FILTER OF ORDER10 IN FIGS. 6 AND 7

TABLE IV
A-EWD DIGITAL FILTER OF ORDER 10 DESIGNED FROM THE FILTER

IN TABLE III

implies L = m = 3. Thus, the transfer function of the digital
filter will have the numerator and the denominator of same degree
nD = m = 3. The coefficients of the numerator are shown in Table II,
together with the coefficients�0; . . . ; �3 of the denominator.

Next, the transfer function of the analog Butterworth filter of order
10 used in the examples shown in Figs. 6 and 7 is considered. The
numerator is 1, and the denominator is given in factored form in
Table III. The design equations (9) yield a minimum-order A-EWD
digital equivalent of this filter, which is represented in Table IV in
pole-zero form.
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Reply to Comments on “Further Improvements in
Digitizing Continuous-Time Filters”

Alan M. Schneider and Chunxi Wan

Dr. Braileanu compares his A-EWD design technique with our WS
technique (which he calls CID) and cites the relative errors of the two
techniques as a function of frequency. The error plot he presents in his
Fig. 8, which we have redrawn as Fig. 1, illustrates that the two tech-
niques exhibit similar small errors in the filter passband but differ in
the filter stopband. The magnitude of the errors for both techniques
is on the order of10(�2) to 10

(�7). In many practical applications,
the energy content in the stopband of a system contributes an insignif-
icant level to the time signal passing through the filter. Small errors
in insignificant contributions represent third- and fourth-order effects
and are of little practical importance. In reality, analog filters built with
real components have a tolerance on the order of one part in 100, and
the spectral errors resulting from component tolerance spread far out-
weigh the simulation differences reported by Dr. Braileanu. Further,
comparing the size of low-level errors in the frequency-domain descrip-
tion of the different filter design methods begs the real question: What
effect do the errors cause in the fidelity of the time-domain signals? In
reality, the time-domain response of different filter implementations is
remarkably tolerant of small changes in the filter’s frequency response.
This tolerance is the result of the temporal averaging inherent in the
convolution process.

Fig. 1 is a replot of two curves of Dr. Braileanu’s Fig. 8: the CID
nd = 5; d = 0 curve (our WS design) and the A-EWDnd = 3; d = 0

curve. The only change is the use of the logarithmic scale for frequency
for the purpose of placing the passband into broader perspective. The
bandwidth of the prototype analog filter for this plot is 5 rad/s. The
sampling rate is 80 rad/s, which is 16 times the bandwidth. This plot
shows that the error of either filter in the passband ranges from10

(�3)

to 10
(�7). The error in the stopband ranges from10(�2) to 10

(�3).
The tenth-order Butterworth filter Dr. Braileanu uses in his compar-

ison (Fig. 6) was designed with a small ratio of sampling frequency to
bandwidth (4:1 to be precise), or to put it another way, the sampling
rate is twice the Nyquist limit. In many signal processing applications,
it is indeed desirable to operate close to the Nyquist limit, and this is
possible because the signal is preconditioned while in its analog form
prior to being sampled. The examples we cite represent signals that are
oversampled (sampling rate to bandwidth) by factors of 10 to 20 since
they are signals in a control system that have not been preconditioned
by an analog prefilter. Again, the significant region over which the fil-
ters should be compared is the passband. The oversampled passband
represents a small part of the total spectrum of the input signal; in this
region, both techniques exhibit very small errors.

The realm of application of causal and noncausal filter differs.
Causal filters are used in real-time applications. The fourth paragraph
of IV. Conclusions agrees. It says “the additionald-step delay (in
noncausal filters) is fully acceptable in most applications, possibly
with the exception of those cases when the filter is placed in feedback
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